
Locust
Release 1.0.3

June 05, 2020

Contents

1 Getting started 3
1.1 What is Locust? . 3

1.1.1 Features . 3
1.1.2 Background . 4
1.1.3 Authors . 4
1.1.4 License . 4

1.2 Installation . 4
1.2.1 Supported Python Versions . 5
1.2.2 Installing Locust on Windows . 5
1.2.3 Installing Locust on macOS . 5
1.2.4 Increasing Maximum Number of Open Files Limit . 5

1.3 Quick start . 6
1.3.1 Example locustfile.py . 6
1.3.2 Start Locust . 7
1.3.3 Locust’s web interface . 7
1.3.4 More options . 9

2 Writing Locust tests 11
2.1 Writing a locustfile . 11

2.1.1 User class . 11
2.1.1.1 wait_time attribute . 11
2.1.1.2 weight attribute . 12
2.1.1.3 host attribute . 12
2.1.1.4 tasks attribute . 12

2.1.2 Tasks . 12
2.1.2.1 Declaring tasks . 13
2.1.2.2 tasks attribute . 13
2.1.2.3 Tagging tasks . 14

2.1.3 TaskSet class . 14
2.1.3.1 Interrupting a TaskSet . 15
2.1.3.2 Differences between tasks in TaskSet and User classes 16
2.1.3.3 Referencing the User instance, or the parent TaskSet instance 16
2.1.3.4 Tags and TaskSets . 16

2.1.4 SequentialTaskSet class . 16
2.1.5 on_start and on_stop methods . 17
2.1.6 test_start and test_stop events . 17

i

2.1.7 Making HTTP requests . 18
2.1.7.1 Using the HTTP client . 18
2.1.7.2 Safe mode . 19
2.1.7.3 Manually controlling if a request should be considered successful or a failure 19
2.1.7.4 Grouping requests to URLs with dynamic parameters 19
2.1.7.5 HTTP Proxy settings . 19

2.1.8 How to structure your test code . 19

3 Running your Locust tests 21
3.1 Configuration . 21

3.1.1 Command Line Options . 21
3.1.2 Environment Variables . 24
3.1.3 Configuration File . 24
3.1.4 All available configuration options . 24

3.2 Running Locust distributed . 25
3.2.1 Example . 25
3.2.2 Options . 26

3.2.2.1 --master . 26
3.2.2.2 --worker . 26
3.2.2.3 --master-host=X.X.X.X . 26
3.2.2.4 --master-port=5557 . 26
3.2.2.5 --master-bind-host=X.X.X.X . 26
3.2.2.6 --master-bind-port=5557 . 26
3.2.2.7 --expect-workers=X . 26

3.2.3 Running distributed with Docker . 26
3.2.4 Running Locust distributed without the web UI . 26
3.2.5 Running Locust distributed in Step Load mode . 26
3.2.6 Increase Locust’s performance . 27

3.3 Running Locust with Docker . 27
3.3.1 Docker Compose . 27
3.3.2 Use docker image as a base image . 27

3.4 Running Locust without the web UI . 27
3.4.1 Setting a time limit for the test . 28
3.4.2 Allow tasks to finish their iteration on shutdown . 28
3.4.3 Running Locust distributed without the web UI . 28
3.4.4 Controlling the exit code of the Locust process . 28

3.5 Increase Locust’s performance with a faster HTTP client . 29
3.5.1 How to use FastHttpUser . 29
3.5.2 API . 29

3.5.2.1 FastHttpUser class . 29
3.5.2.2 FastHttpSession class . 30

4 Other functionalities 33
4.1 Running Locust in Step Load Mode . 33

4.1.1 Options . 33
4.1.1.1 --step-load . 33
4.1.1.2 --step-users . 33
4.1.1.3 --step-time . 33
4.1.1.4 Running Locust in step load mode without the web UI 33
4.1.1.5 Running Locust distributed in step load mode . 34

4.2 Retrieve test statistics in CSV format . 34
4.3 Testing other systems using custom clients . 34

4.3.1 Sample XML-RPC User client . 34
4.4 Extending Locust . 36

ii

4.4.1 Adding Web Routes . 37
4.5 Logging . 37

4.5.1 Options . 37
4.5.1.1 --skip-log-setup . 37
4.5.1.2 --loglevel . 37
4.5.1.3 --logfile . 37

4.5.2 Locust loggers . 37
4.6 Using Locust as a library . 38

4.6.1 Full example . 38

5 API 41
5.1 API . 41

5.1.1 User class . 41
5.1.2 HttpUser class . 42
5.1.3 TaskSet class . 42
5.1.4 task decorator . 44
5.1.5 tag decorator . 44
5.1.6 SequentialTaskSet class . 44
5.1.7 Built in wait_time functions . 45
5.1.8 HttpSession class . 46
5.1.9 Response class . 48
5.1.10 ResponseContextManager class . 50
5.1.11 InterruptTaskSet Exception . 51
5.1.12 Environment class . 51
5.1.13 Event hooks . 52

5.1.13.1 EventHook class . 54
5.1.14 Runner classes . 55
5.1.15 Web UI class . 56

6 Third-party tools 57
6.1 Third party tools . 57

6.1.1 Support for other sampler protocols, reporting etc . 57
6.1.2 Automate distributed runs with no manual steps . 57
6.1.3 Using other languages . 57

6.1.3.1 Golang . 57
6.1.3.2 Java . 57

6.1.4 Configuration Management . 58

7 Changelog 59
7.1 Changelog Highlights . 59

7.1.1 In development . 59
7.1.2 1.0.3 . 59
7.1.3 1.0.2 . 59
7.1.4 1.0, 1.0.1 . 59

7.1.4.1 Locust class renamed to User . 59
7.1.4.2 Ability to declare @task directly under the User class 60
7.1.4.3 Task tagging . 60
7.1.4.4 Environment variables changed . 60
7.1.4.5 Other breaking changes . 61
7.1.4.6 Web UI improvements . 61
7.1.4.7 Other fixes and improvements . 61

7.1.5 0.14.6 . 62
7.1.6 0.14.0 . 62
7.1.7 0.13.5 . 62

iii

7.1.8 0.13.4 . 62
7.1.9 0.13.3 . 62
7.1.10 0.13.2 . 62
7.1.11 0.13.1 . 62
7.1.12 0.13.0 . 63
7.1.13 0.12.2 . 63
7.1.14 0.12.1 . 63
7.1.15 0.10.0 . 64
7.1.16 0.9.0 . 64
7.1.17 0.8.1 . 64
7.1.18 0.8 . 64
7.1.19 0.7.5 . 64
7.1.20 0.7.4 . 65
7.1.21 0.7.3 . 65
7.1.22 0.7.2 . 65
7.1.23 0.7.1 . 65
7.1.24 0.7 . 65

7.1.24.1 HTTP client functionality moved to HttpLocust 65
7.1.24.2 msgpack for serializing master/slave data . 66
7.1.24.3 requests updated to version 2.2 . 66
7.1.24.4 gevent updated to version 1.0 . 66
7.1.24.5 Big refactoring of request statistics code . 66
7.1.24.6 Removed support for avg_wait . 66
7.1.24.7 Removed support for ramping . 66
7.1.24.8 Locust Event hooks now takes keyword argument 67
7.1.24.9 Other changes . 67

7.1.25 0.6.2 . 67
7.1.26 0.6.1 . 67
7.1.27 0.6 . 68

7.1.27.1 SubLocust replaced by TaskSet and Locust class behaviour changed 68
7.1.27.2 Locust now uses Requests . 69
7.1.27.3 Other improvements and bug fixes . 70
7.1.27.4 Smaller API Changes . 71

7.1.28 0.5.1 . 71
7.1.29 0.5 . 71

7.1.29.1 API changes . 71
7.1.29.2 Improvements and bug fixes . 71

7.1.30 0.4 . 72
7.1.30.1 API changes . 72
7.1.30.2 Improvements and bug fixes . 72

Python Module Index 73

Index 75

iv

Locust, Release 1.0.3

Everything you need to know about Locust

About locust

Locust is a scalable load testing framework written in Python

• Website: https://locust.io/

• Source code: https://github.com/locustio/locust

• Twitter: @locustio

Contents 1

https://locust.io/
https://github.com/locustio/locust
https://twitter.com/locustio

Locust, Release 1.0.3

2 Contents

CHAPTER 1

Getting started

1.1 What is Locust?

Locust is an easy-to-use, distributed, user load testing tool. It is intended for load-testing web sites (or other systems)
and figuring out how many concurrent users a system can handle.

The idea is that during a test, a swarm of locust users will attack your website. The behavior of each user is defined by
you using Python code, and the swarming process is monitored from a web UI in real-time. This will help you battle
test and identify bottlenecks in your code before letting real users in.

Locust is completely event-based, and therefore it’s possible to support thousands of concurrent users on a single
machine. In contrast to many other event-based apps it doesn’t use callbacks. Instead it uses light-weight processes,
through gevent. Each locust swarming your site is actually running inside its own process (or greenlet, to be correct).
This allows you to write very expressive scenarios in Python without complicating your code with callbacks.

1.1.1 Features

• Write user test scenarios in plain-old Python

No need for clunky UIs or bloated XML—just code as you normally would. Based on coroutines instead
of callbacks, your code looks and behaves like normal, blocking Python code.

• Distributed & Scalable - supports hundreds of thousands of users

Locust supports running load tests distributed over multiple machines. Being event-based, even one Lo-
cust node can handle thousands of users in a single process. Part of the reason behind this is that even if
you simulate that many users, not all are actively hitting your system. Often, users are idle figuring out
what to do next. Requests per second != number of users online.

• Web-based UI

Locust has a neat HTML+JS user interface that shows relevant test details in real-time. And since the UI
is web-based, it’s cross-platform and easily extendable.

• Can test any system

3

http://en.wikipedia.org/wiki/Locust
http://www.gevent.org/

Locust, Release 1.0.3

Even though Locust is web-oriented, it can be used to test almost any system. Just write a client for what
ever you wish to test and swarm it with locusts! It’s super easy!

• Hackable

Locust is small and very hackable and we intend to keep it that way. All heavy-lifting of evented I/O and
coroutines are delegated to gevent. The brittleness of alternative testing tools was the reason we created
Locust.

1.1.2 Background

Locust was created because we were fed up with existing solutions. None of them are solving the right problem
and to me, they are missing the point. We’ve tried both Apache JMeter and Tsung. Both tools are quite OK to use;
we’ve used the former many times benchmarking stuff at work. JMeter comes with a UI, which you might think for a
second is a good thing. But you soon realize it’s a PITA to “code” your testing scenarios through some point-and-click
interface. Secondly, JMeter is thread-bound. This means for every user you want to simulate, you need a separate
thread. Needless to say, benchmarking thousands of users on a single machine just isn’t feasible.

Tsung, on the other hand, does not have these thread issues as it’s written in Erlang. It can make use of the light-weight
processes offered by BEAM itself and happily scale up. But when it comes to defining the test scenarios, Tsung is
as limited as JMeter. It offers an XML-based DSL to define how a user should behave when testing. I guess you
can imagine the horror of “coding” this. Displaying any sorts of graphs or reports when completed requires you to
post-process the log files generated from the test. Only then can you get an understanding of how the test went.

Anyway, we’ve tried to address these issues when creating Locust. Hopefully none of the above pain points should
exist.

I guess you could say we’re really just trying to scratch our own itch here. We hope others will find it as useful as we
do.

1.1.3 Authors

• Jonatan Heyman (@jonatanheyman on Twitter)

• Carl Byström (@cgbystrom on Twitter)

• Joakim Hamrén (@Jahaaja on Twitter)

• Hugo Heyman (@hugoheyman on Twitter)

1.1.4 License

Open source licensed under the MIT license (see LICENSE file for details).

1.2 Installation

Locust is available on PyPI and can be installed with pip.

$ pip3 install locust

If you want the bleeding edge version, you can use pip to install directly from our Git repository. For example, to
install the master branch using Python 3:

4 Chapter 1. Getting started

http://heyman.info
https://twitter.com/jonatanheyman
https://twitter.com/cgbystrom
https://twitter.com/Jahaaja
https://twitter.com/hugoheyman
https://pypi.org/project/locustio/
https://pip.pypa.io/

Locust, Release 1.0.3

$ pip3 install -e git://github.com/locustio/locust.git@master#egg=locustio

Once Locust is installed, a locust command should be available in your shell. (if you’re not using virtualenv-which
you should-make sure your python script directory is on your path).

To see available options, run:

$ locust --help

1.2.1 Supported Python Versions

Locust is supported on Python 3.6, 3.7 and 3.8.

1.2.2 Installing Locust on Windows

On Windows, running pip install locustio should work.

However, if it doesn’t, chances are that it can be fixed by first installing the pre built binary packages for pyzmq, gevent
and greenlet.

You can find an unofficial collection of pre built python packages for windows here: http://www.lfd.uci.edu/~gohlke/
pythonlibs/

When you’ve downloaded a pre-built .whl file, you can install it with:

$ pip install name-of-file.whl

Once you’ve done that you should be able to just pip install locustio.

Note: Running Locust on Windows should work fine for developing and testing your load testing scripts. However,
when running large scale tests, it’s recommended that you do that on Linux machines, since gevent’s performance
under Windows is poor.

1.2.3 Installing Locust on macOS

Make sure you have a working installation of Python 3.6 or higher and follow the above instructions. Homebrew can
be used to install Python on macOS.

1.2.4 Increasing Maximum Number of Open Files Limit

Every HTTP connection on a machine opens a new file (technically a file descriptor). Operating systems may set a
low limit for the maximum number of files that can be open. If the limit is less than the number of simulated users in
a test, failures will occur.

Increase the operating system’s default maximum number of files limit to a number higher than the number of simu-
lated users you’ll want to run. How to do this depends on the operating system in use.

1.2. Installation 5

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://mxcl.github.com/homebrew/

Locust, Release 1.0.3

1.3 Quick start

In Locust you define your user behaviour in Python code. You then use the locust command and (optionally) its
web interface to spawn and simulate a number of those users while gathering request statistics.

1.3.1 Example locustfile.py

import random
from locust import HttpUser, task, between

class QuickstartUser(HttpUser):
wait_time = between(5, 9)

@task
def index_page(self):

self.client.get("/hello")
self.client.get("/world")

@task(3)
def view_item(self):

item_id = random.randint(1, 10000)
self.client.get(f"/item?id={item_id}", name="/item")

def on_start(self):
self.client.post("/login", {"username":"foo", "password":"bar"})

Let’s break it down

import random
from locust import HttpUser, task, between

A locust file is just a normal Python module, it can import code from other files or packages.

class QuickstartUser(HttpUser):

Here we define a class for the users that we will be simulating. It inherits from HttpUser which gives each user
a client attribute, which is an instance of HttpSession, that can be used to make HTTP requests to the target
system that we want to load test. When a test starts, locust will create an instance of this class for every user that it
simulates, and each of these users will start running within their own green gevent thread.

wait_time = between(5, 9)

Our class defines a wait_time function that will make the simulated users wait between 5 and 9 seconds after each
task is executed. For more info see wait_time attribute.

@task
def index_page(self):

self.client.get("/hello")
self.client.get("/world")

@task(3)
def view_item(self):

...

6 Chapter 1. Getting started

Locust, Release 1.0.3

We’ve also declared two tasks by decorating two methods with @task, one of which has been given a higher weight
(3). When a User of this type runs it’ll pick one of either hello or view_item - with three times the chance of
picking view_item - call that method and then pick a duration uniformly between 5 and 9 and just sleep for that
duration. After it’s wait time it’ll pick a new task and keep repeating that.

@task(3)
def view_item(self):

item_id = random.randint(1, 10000)
self.client.get(f"/item?id={item_id}", name="/item")

In the view_item task we load a dynamic URL by using a query parameter that is a number picked at random
between 1 and 10000. In order to not get 10k separate entries in Locust’s statistics - since the stats is grouped on the
URL - we use the name parameter to group all those requests under an entry named "/item" instead.

Note that only methods decorated with @task will be called, so you can define your own internal helper methods any
way you like.

def on_start(self):

Additionally we’ve declared an on_start method. A method with this name will be called for each simulated user
when they start. For more info see on_start and on_stop methods.

1.3.2 Start Locust

Put the above code in a file named locustfile.py in your current directory and run:

$ locust

If your Locust file is located somewhere else, you can specify it using -f

$ locust -f locust_files/my_locust_file.py

Note: To see all available options type: locust --help or check Configuration

1.3.3 Locust’s web interface

Once you’ve started Locust using one of the above command lines, you should open up a browser and point it to
http://127.0.0.1:8089. Then you should be greeted with something like this:

1.3. Quick start 7

http://127.0.0.1:8089

Locust, Release 1.0.3

Fill out the form and try it out! (but note that if you dont change your locust file to match your target system you’ll
mostly get error responses)

8 Chapter 1. Getting started

Locust, Release 1.0.3

1.3.4 More options

To run Locust distributed across multiple Python processes or machines, you can start a single Locust master process
with the --master command line parameter, and then any number of Locust worker processes usin the --worker
command line parameter. See Running Locust distributed for more info.

To start tests directly, without using the web interface, use --headless.

Parameters can also be set through environment variables, or in a config file.

1.3. Quick start 9

Locust, Release 1.0.3

10 Chapter 1. Getting started

CHAPTER 2

Writing Locust tests

2.1 Writing a locustfile

A locustfile is a normal python file. The only requirement is that it declares at least one class - let’s call it the user
class - that inherits from the class User.

2.1.1 User class

A user class represents one user (or a swarming locust if you will). Locust will spawn (hatch) one instance of the User
class for each user that is being simulated. There are a few attributes that a User class should typically define.

2.1.1.1 wait_time attribute

In addition to the tasks attribute, one should also declare a wait_time method. It’s used to determine for how long a
simulated user will wait between executing tasks. Locust comes with a few built in functions that return a few common
wait_time methods.

The most common one is between. It’s used to make the simulated users wait a random time between a min and
max value after each task execution. Other built in wait time functions are constant and constant_pacing.

With the following locustfile, each user would wait between 5 and 15 seconds between tasks:

from locust import User, task, between

class MyUser(User):
@task
def my_task(self):

print("executing my_task")

wait_time = between(5, 15)

The wait_time method should return a number of seconds (or fraction of a second) and can also be declared on a
TaskSet class, in which case it will only be used for that TaskSet.

11

Locust, Release 1.0.3

It’s also possible to declare your own wait_time method directly on a User or TaskSet class. The following User class
would start sleeping for one second and then one, two, three, etc.

class MyUser(User):
last_wait_time = 0

def wait_time(self):
self.last_wait_time += 1
return self.last_wait_time

...

2.1.1.2 weight attribute

If more than one user class exists in the file, and no user classes are specified on the command line, Locust will spawn
an equal number of each of the user classes. You can also specify which of the user classes to use from the same
locustfile by passing them as command line arguments:

$ locust -f locust_file.py WebUser MobileUser

If you wish to simulate more users of a certain type you can set a weight attribute on those classes. Say for example,
web users are three times more likely than mobile users:

class WebUser(User):
weight = 3
...

class MobileUser(User):
weight = 1
...

2.1.1.3 host attribute

The host attribute is a URL prefix (i.e. “http://google.com”) to the host that is to be loaded. Usually, this is specified
in Locust’s web UI or on the command line, using the --host option, when locust is started.

If one declares a host attribute in the user class, it will be used in the case when no --host is specified on the
command line or in the web request.

2.1.1.4 tasks attribute

A User class can have tasks declared as methods under it using the @task decorator, but one can also specify tasks
using the tasks attribute which is described in more details below.

2.1.2 Tasks

When a load test is started, an instance of a User class will be created for each simulated user and they will start
running within their own green thread. When these users run they pick tasks that they execute, sleeps for awhile, and
then picks a new task and so on.

The tasks are normal python callables and - if we were load-testing an auction website - they could do stuff like
“loading the start page”, “searching for some product”, “making a bid”, etc.

12 Chapter 2. Writing Locust tests

http://google.com

Locust, Release 1.0.3

2.1.2.1 Declaring tasks

The typical way of declaring tasks for a User class (or a TaskSet) it to use the task decorator.

Here is an example:

from locust import User, task, constant

class MyUser(User):
wait_time = constant(1)

@task
def my_task(self):

print("User instance (%r) executing my_task" % self)

@task takes an optional weight argument that can be used to specify the task’s execution ratio. In the following
example task2 will have twice the chance of being picked as task1:

from locust import User, task, between

class MyUser(User):
wait_time = between(5, 15)

@task(3)
def task1(self):

pass

@task(6)
def task2(self):

pass

2.1.2.2 tasks attribute

Using the @task decorator to declare tasks is a convenience, and usually the best way to do it. However, it’s also
possible to define the tasks of a User or TaskSet by setting the tasks attribute (using the @task decorator will
actually just populate the tasks attribute).

The tasks attribute is either a list of Task, or a <Task : int> dict, where Task is either a python callable or a TaskSet
class (more on that below). If the task is a normal python function they receive a single argument which is the User
instance that is executing the task.

Here is an example of a User task declared as a normal python function:

from locust import User, constant

def my_task(l):
pass

class MyUser(User):
tasks = [my_task]
wait_time = constant(1)

If the tasks attribute is specified as a list, each time a task is to be performed, it will be randomly chosen from the tasks
attribute. If however, tasks is a dict - with callables as keys and ints as values - the task that is to be executed will be
chosen at random but with the int as ratio. So with a tasks that looks like this:

2.1. Writing a locustfile 13

Locust, Release 1.0.3

{my_task: 3, another_task: 1}

my_task would be 3 times more likely to be executed than another_task.

Internally the above dict will actually be expanded into a list (and the tasks attribute is updated) that looks like this:

[my_task, my_task, my_task, another_task]

and then Python’s random.choice() is used pick tasks from the list.

2.1.2.3 Tagging tasks

By tagging tasks using the tag <locust.tag> decorator, you can be picky about what tasks are executed during the test
using the --tags and --exclude-tags arguments. Consider the following example:

from locust import User, constant, task, tag

class MyUser(User):
wait_time = constant(1)

@tag('tag1')
@task
def task1(self):

pass

@tag('tag1', 'tag2')
@task
def task2(self):

pass

@tag('tag3')
@task
def task3(self):

pass

@task
def task4(self):

pass

If you started this test with --tags tag1, only task1 and task2 would be executed during the test. If you started it
with --tags tag2 tag3, only task2 and task3 would be executed.

--exclude-tags will behave in the exact opposite way. So, if you start the test with --exclude-tags tag3,
only task1, task2, and task4 will be executed. Exclusion always wins over inclusion, so if a task has a tag you’ve
included and a tag you’ve excluded, it will not be executed.

2.1.3 TaskSet class

Since real websites are usually built up in an hierarchical way, with multiple sub-sections, locust has the TaskSet class.
A locust task can not only be a Python callable, but also a TaskSet class. A TaskSet is a collection of locust tasks
that will be executed much like the tasks declared directly on a User class, with the user sleeping in between task
executions. Here’s a short example of a locustfile that has a TaskSet:

from locust import User, TaskSet, between

(continues on next page)

14 Chapter 2. Writing Locust tests

Locust, Release 1.0.3

(continued from previous page)

class ForumSection(TaskSet):
@task(10)
def view_thread(self):

pass

@task(1)
def create_thread(self):

pass

@task(1)
def stop(self):

self.interrupt()

class LoggedInUser(User):
wait_time = between(5, 120)
tasks = {ForumSection:2}

@task
def index_page(self):

pass

A TaskSet can also be inlined directly under a User/TaskSet class using the @task decorator:

class MyUser(User):
@task(1)
class MyTaskSet(TaskSet):

...

The tasks of a TaskSet class can be other TaskSet classes, allowing them to be nested any number of levels. This
allows us to define a behaviour that simulates users in a more realistic way.

For example we could define TaskSets with the following structure:

- Main user behaviour
- Index page
- Forum page
- Read thread

- Reply
- New thread
- View next page

- Browse categories
- Watch movie
- Filter movies

- About page

When a running User thread picks a TaskSet class for execution an instance of this class will be created and execution
will then go into this TaskSet. What happens then is that one of the TaskSet’s tasks will be picked and executed, and
then the thread will sleep for a duration specified by the User’s wait_time function (unless a wait_time function
has been declared directly on the TaskSet class, in which case it’ll use that function instead), then pick a new task from
the TaskSet’s tasks, wait again, and so on.

2.1.3.1 Interrupting a TaskSet

One important thing to know about TaskSets is that they will never stop executing their tasks, and hand over execution
back to their parent User/TaskSet, by themselves. This has to be done by the developer by calling the TaskSet.
interrupt() method.

2.1. Writing a locustfile 15

Locust, Release 1.0.3

interrupt(self, reschedule=True)
Interrupt the TaskSet and hand over execution control back to the parent TaskSet.

If reschedule is True (default), the parent User will immediately re-schedule, and execute, a new task.

In the following example, if we didn’t have the stop task that calls self.interrupt(), the simulated user would
never stop running tasks from the Forum taskset once it has went into it:

class RegisteredUser(User):
@task
class Forum(TaskSet):

@task(5)
def view_thread(self):

pass

@task(1)
def stop(self):

self.interrupt()

@task
def frontpage(self):

pass

Using the interrupt function, we can - together with task weighting - define how likely it is that a simulated user leaves
the forum.

2.1.3.2 Differences between tasks in TaskSet and User classes

One difference for tasks residing under a TaskSet, compared to tasks residing directly under a User, is that the argument
that they are passed when executed (self for tasks declared as methods with the @task decorator) is a reference to
the TaskSet instance, instead of the User instance. The User instance can be accessed from within a TaskSet instance
through the TaskSet.user. TaskSets also contains a convenience client attribute that refers to the client attribute
on the User instance.

2.1.3.3 Referencing the User instance, or the parent TaskSet instance

A TaskSet instance will have the attribute user point to its User instance, and the attribute parent point to its parent
TaskSet instance.

2.1.3.4 Tags and TaskSets

You can tag TaskSets using the tag <locust.tag> decorator in a similar way to normal tasks, as described above
<tagging-tasks>, but there are some nuances worth mentioning. Tagging a TaskSet will automatically apply the tag(s)
to all of the TaskSet’s tasks. Furthermore, if you tag a task within a nested TaskSet, locust will execute that task even
if the TaskSet isn’t tagged.

2.1.4 SequentialTaskSet class

SequentialTaskSet is a TaskSet but its tasks will be executed in the order that they are declared. Weights are
ignored for tasks on a SequentialTaskSet class. It is possible to nest SequentialTaskSets within a TaskSet and vice
versa.

16 Chapter 2. Writing Locust tests

Locust, Release 1.0.3

def function_task(taskset):
pass

class SequenceOfTasks(SequentialTaskSet):
@task
def first_task(self):

pass

tasks = [functon_task]

@task
def second_task(self):

pass

@task
def third_task(self):

pass

In the above example, the tasks are executed in the order of declaration:

1. first_task

2. function_task

3. second_task

4. third_task

and then it will start over at first_task again.

2.1.5 on_start and on_stop methods

User and TaskSet classes can declare an on_start method and/or on_stop method. A User will call it’s
on_start method when it starts running, and it’s on_stop method when it stops running. For a TaskSet, the
on_start method is called when a simulated user starts executing that TaskSet, and on_stop is called when the
simulated user stops executing that TaskSet (when interrupt() is called, or the user is killed).

2.1.6 test_start and test_stop events

If you need to run some code at the start or stop of a load test, you should use the test_start and test_stop
events. You can set up listeners for these events at the module level of your locustfile:

from locust import events

@events.test_start.add_listener
def on_test_start(**kwargs):

print("A new test is starting")

@events.test_stop.add_listener
def on_test_stop(**kwargs):

print("A new test is ending")

When running Locust distributed the test_start and test_stop events will only be fired in the master node.

2.1. Writing a locustfile 17

Locust, Release 1.0.3

2.1.7 Making HTTP requests

So far, we’ve only covered the task scheduling part of a User. In order to actually load test a system we need to
make HTTP requests. To help us do this, the HttpLocust class exists. When using this class, each instance gets a
client attribute which will be an instance of HttpSession which can be used to make HTTP requests.

class HttpUser(*args, **kwargs)
Represents an HTTP “user” which is to be hatched and attack the system that is to be load tested.

The behaviour of this user is defined by its tasks. Tasks can be declared either directly on the class by using the
@task decorator on methods, or by setting the tasks attribute.

This class creates a client attribute on instantiation which is an HTTP client with support for keeping a user
session between requests.

client = None
Instance of HttpSession that is created upon instantiation of Locust. The client supports cookies, and
therefore keeps the session between HTTP requests.

When inheriting from the HttpUser class, we can use its client attribute to make HTTP requests against the server.
Here is an example of a locust file that can be used to load test a site with two URLs; / and /about/:

from locust import HttpUser, task, between

class MyUser(HttpUser):
wait_time = between(5, 15)

@task(2)
def index(self):

self.client.get("/")

@task(1)
def about(self):

self.client.get("/about/")

Using the above User class, each simulated user will wait between 5 and 15 seconds between the requests, and / will
be requested twice as much as /about/.

2.1.7.1 Using the HTTP client

Each instance of HttpUser has an instance of HttpSession in the client attribute. The HttpSession class is actually
a subclass of requests.Session and can be used to make HTTP requests, that will be reported to User’s statistics,
using the get, post, put, delete, head, patch and options methods. The HttpSession instance will preserve
cookies between requests so that it can be used to log in to websites and keep a session between requests. The client
attribute can also be referenced from the User instance’s TaskSet instances so that it’s easy to retrieve the client and
make HTTP requests from within your tasks.

Here’s a simple example that makes a GET request to the /about path (in this case we assume self is an instance of a
TaskSet or HttpUser class:

response = self.client.get("/about")
print("Response status code:", response.status_code)
print("Response content:", response.text)

And here’s an example making a POST request:

response = self.client.post("/login", {"username":"testuser", "password":"secret"})

18 Chapter 2. Writing Locust tests

https://requests.readthedocs.io/en/latest/api/#requests.Session

Locust, Release 1.0.3

2.1.7.2 Safe mode

The HTTP client is configured to run in safe_mode. What this does is that any request that fails due to a connection
error, timeout, or similar will not raise an exception, but rather return an empty dummy Response object. The request
will be reported as a failure in User’s statistics. The returned dummy Response’s content attribute will be set to None,
and its status_code will be 0.

2.1.7.3 Manually controlling if a request should be considered successful or a failure

By default, requests are marked as failed requests unless the HTTP response code is OK (<400). Most of the time,
this default is what you want. Sometimes however-for example when testing a URL endpoint that you expect to return
404, or testing a badly designed system that might return 200 OK even though an error occurred-there’s a need for
manually controlling if locust should consider a request as a success or a failure.

One can mark requests as failed, even when the response code is OK, by using the catch_response argument and a
with statement:

with self.client.get("/", catch_response=True) as response:
if response.content != b"Success":

response.failure("Got wrong response")

Just as one can mark requests with OK response codes as failures, one can also use catch_response argument together
with a with statement to make requests that resulted in an HTTP error code still be reported as a success in the statistics:

with self.client.get("/does_not_exist/", catch_response=True) as response:
if response.status_code == 404:

response.success()

2.1.7.4 Grouping requests to URLs with dynamic parameters

It’s very common for websites to have pages whose URLs contain some kind of dynamic parameter(s). Often it
makes sense to group these URLs together in User’s statistics. This can be done by passing a name argument to the
HttpSession's different request methods.

Example:

Statistics for these requests will be grouped under: /blog/?id=[id]
for i in range(10):

self.client.get("/blog?id=%i" % i, name="/blog?id=[id]")

2.1.7.5 HTTP Proxy settings

To improve performance, we configure requests to not look for HTTP proxy settings in the environment by setting
requests.Session’s trust_env attribute to False. If you don’t want this you can manually set locust_instance.
client.trust_env to True. For further details, refer to the documentation of requests.

2.1.8 How to structure your test code

It’s important to remember that the locustfile.py is just an ordinary Python module that is imported by Locust. From
this module you’re free to import other python code just as you normally would in any Python program. The current
working directory is automatically added to python’s sys.path, so any python file/module/packages that resides in
the working directory can be imported using the python import statement.

2.1. Writing a locustfile 19

https://requests.readthedocs.io/en/master/api/#requests.Session.trust_env

Locust, Release 1.0.3

For small tests, keeping all of the test code in a single locustfile.py should work fine, but for larger test suites,
you’ll probably want to split the code into multiple files and directories.

How you structure the test source code is ofcourse entirely up to you, but we recommend that you follow Python best
practices. Here’s an example file structure of an imaginary Locust project:

• Project root

– common/

* __init__.py

* auth.py

* config.py

– locustfile.py

– requirements.txt (External Python dependencies is often kept in a requirements.txt)

A project with multiple different locustfiles could also keep them in a separate subdirectory:

• Project root

– common/

* __init__.py

* auth.py

* config.py

– locustfiles/

* api.py

* website.py

– requirements.txt

With any of the above project structure, your locustfile can import common libraries using:

import common.auth

20 Chapter 2. Writing Locust tests

CHAPTER 3

Running your Locust tests

3.1 Configuration

3.1.1 Command Line Options

The most straight forward way to Configure how Locust is run is through command line arguments.

$ locust --help

Usage: locust [OPTIONS] [UserClass ...]

Common options:
-h, --help show this help message and exit
-f LOCUSTFILE, --locustfile LOCUSTFILE

Python module file to import, e.g. '../other.py'.
Default: locustfile

--config CONFIG Config file path
-H HOST, --host HOST Host to load test in the following format:

http://10.21.32.33
-u NUM_USERS, --users NUM_USERS

Number of concurrent Locust users. Only used together
with --headless

-r HATCH_RATE, --hatch-rate HATCH_RATE
The rate per second in which users are spawned. Only
used together with --headless

-t RUN_TIME, --run-time RUN_TIME
Stop after the specified amount of time, e.g. (300s,
20m, 3h, 1h30m, etc.). Only used together with
--headless

-l, --list Show list of possible User classes and exit

Web UI options:
--web-host WEB_HOST Host to bind the web interface to. Defaults to '*'

(continues on next page)

21

Locust, Release 1.0.3

(continued from previous page)

(all interfaces)
--web-port WEB_PORT, -P WEB_PORT

Port on which to run web host
--headless Disable the web interface, and instead start the load

test immediately. Requires -u and -t to be specified.
--web-auth WEB_AUTH Turn on Basic Auth for the web interface. Should be

supplied in the following format: username:password
--tls-cert TLS_CERT Optional path to TLS certificate to use to serve over

HTTPS
--tls-key TLS_KEY Optional path to TLS private key to use to serve over

HTTPS

Master options:
Options for running a Locust Master node when running Locust distributed. A Master

→˓node need Worker nodes that connect to it before it can run load tests.

--master Set locust to run in distributed mode with this
process as master

--master-bind-host MASTER_BIND_HOST
Interfaces (hostname, ip) that locust master should
bind to. Only used when running with --master.
Defaults to * (all available interfaces).

--master-bind-port MASTER_BIND_PORT
Port that locust master should bind to. Only used when
running with --master. Defaults to 5557.

--expect-workers EXPECT_WORKERS
How many workers master should expect to connect
before starting the test (only when --headless used).

Worker options:

Options for running a Locust Worker node when running Locust distributed.
Only the LOCUSTFILE (-f option) need to be specified when starting a Worker, since

→˓other options such as -u, -r, -t are specified on the Master node.

--worker Set locust to run in distributed mode with this
process as worker

--master-host MASTER_HOST
Host or IP address of locust master for distributed
load testing. Only used when running with --worker.
Defaults to 127.0.0.1.

--master-port MASTER_PORT
The port to connect to that is used by the locust
master for distributed load testing. Only used when
running with --worker. Defaults to 5557.

Tag options:
Locust tasks can be tagged using the @tag decorator. These options let specify

→˓which tasks to include or exclude during a test.

-T [TAG [TAG ...]], --tags [TAG [TAG ...]]
List of tags to include in the test, so only tasks
with any matching tags will be executed

-E [TAG [TAG ...]], --exclude-tags [TAG [TAG ...]]
List of tags to exclude from the test, so only tasks
with no matching tags will be executed

(continues on next page)

22 Chapter 3. Running your Locust tests

Locust, Release 1.0.3

(continued from previous page)

Request statistics options:
--csv CSV_PREFIX Store current request stats to files in CSV format.

Setting this option will generate three files:
[CSV_PREFIX]_stats.csv, [CSV_PREFIX]_stats_history.csv
and [CSV_PREFIX]_failures.csv

--csv-full-history Store each stats entry in CSV format to
_stats_history.csv file

--print-stats Print stats in the console
--only-summary Only print the summary stats
--reset-stats Reset statistics once hatching has been completed.

Should be set on both master and workers when running
in distributed mode

Logging options:
--skip-log-setup Disable Locust's logging setup. Instead, the

configuration is provided by the Locust test or Python
defaults.

--loglevel LOGLEVEL, -L LOGLEVEL
Choose between DEBUG/INFO/WARNING/ERROR/CRITICAL.
Default is INFO.

--logfile LOGFILE Path to log file. If not set, log will go to
stdout/stderr

Step load options:
--step-load Enable Step Load mode to monitor how performance

metrics varies when user load increases. Requires
--step-users and --step-time to be specified.

--step-users STEP_USERS
User count to increase by step in Step Load mode. Only
used together with --step-load

--step-time STEP_TIME
Step duration in Step Load mode, e.g. (300s, 20m, 3h,
1h30m, etc.). Only used together with --step-load

Other options:
--show-task-ratio Print table of the User classes' task execution ratio
--show-task-ratio-json

Print json data of the User classes' task execution
ratio

--version, -V Show program's version number and exit
--exit-code-on-error EXIT_CODE_ON_ERROR

Sets the process exit code to use when a test result
contain any failure or error

-s STOP_TIMEOUT, --stop-timeout STOP_TIMEOUT
Number of seconds to wait for a simulated user to
complete any executing task before exiting. Default is
to terminate immediately. This parameter only needs to
be specified for the master process when running
Locust distributed.

User classes:
UserClass Optionally specify which User classes that should be

used (available User classes can be listed with -l or
--list)

3.1. Configuration 23

Locust, Release 1.0.3

3.1.2 Environment Variables

Most of the options that can be set through command line arguments can also be set through environment variables.
Example:

3.1.3 Configuration File

Any of the options that can be set through command line arguments can also be set by a configuration file in the config
file format.

Locust will look for ~/.locust.conf and ./locust.conf by default, and you can specify an additional file
using the --config flag.

Example:

$ locust --config=master.conf

Note: Configuration values are read (overridden) in the following order:

3.1.4 All available configuration options

Here’s a table of all the available configuration options, and their corresponding Environment and config file keys:

Command line Environment Config file Description
-f, --locustfile LOCUST_LOCUSTFILE locustfile Python module file to import, e.g. ‘../other.py’. Default: locustfile
-H, --host LOCUST_HOST host Host to load test in the following format: http://10.21.32.33
-u, --users LOCUST_USERS users Number of concurrent Locust users. Only used together with –headless
-r, --hatch-rate LOCUST_HATCH_RATE hatch-rate The rate per second in which users are spawned. Only used together with –headless
-t, --run-time LOCUST_RUN_TIME run-time Stop after the specified amount of time, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with –headless
--web-host LOCUST_WEB_HOST web-host Host to bind the web interface to. Defaults to ‘*’ (all interfaces)
--web-port, -P LOCUST_WEB_PORT web-port Port on which to run web host
--headless LOCUST_HEADLESS headless Disable the web interface, and instead start the load test immediately. Requires -u and -t to be specified.
--web-auth LOCUST_WEB_AUTH web-auth Turn on Basic Auth for the web interface. Should be supplied in the following format: username:password
--tls-cert LOCUST_TLS_CERT tls-cert Optional path to TLS certificate to use to serve over HTTPS
--tls-key LOCUST_TLS_KEY tls-key Optional path to TLS private key to use to serve over HTTPS
--master LOCUST_MODE_MASTER master Set locust to run in distributed mode with this process as master
--master-bind-host LOCUST_MASTER_BIND_HOST master-bind-host Interfaces (hostname, ip) that locust master should bind to. Only used when running with –master. Defaults to * (all available interfaces).
--master-bind-port LOCUST_MASTER_BIND_PORT master-bind-port Port that locust master should bind to. Only used when running with –master. Defaults to 5557.
--expect-workers LOCUST_EXPECT_WORKERS expect-workers How many workers master should expect to connect before starting the test (only when –headless used).
--worker LOCUST_MODE_WORKER worker Set locust to run in distributed mode with this process as worker
--master-host LOCUST_MASTER_NODE_HOST master-host Host or IP address of locust master for distributed load testing. Only used when running with –worker. Defaults to 127.0.0.1.
--master-port LOCUST_MASTER_NODE_PORT master-port The port to connect to that is used by the locust master for distributed load testing. Only used when running with –worker. Defaults to 5557.
-T, --tags LOCUST_TAGS tags List of tags to include in the test, so only tasks with any matching tags will be executed
-E, --exclude-tags LOCUST_EXCLUDE_TAGS exclude-tags List of tags to exclude from the test, so only tasks with no matching tags will be executed
--csv LOCUST_CSV csv Store current request stats to files in CSV format. Setting this option will generate three files: [CSV_PREFIX]_stats.csv, [CSV_PREFIX]_stats_history.csv and [CSV_PREFIX]_failures.csv
--csv-full-history LOCUST_CSV_FULL_HISTORY csv-full-history Store each stats entry in CSV format to _stats_history.csv file
--print-stats LOCUST_PRINT_STATS print-stats Print stats in the console
--only-summary LOCUST_ONLY_SUMMARY only-summary Only print the summary stats
--reset-stats LOCUST_RESET_STATS reset-stats Reset statistics once hatching has been completed. Should be set on both master and workers when running in distributed mode

Continued on next page

24 Chapter 3. Running your Locust tests

https://github.com/bw2/ConfigArgParse#config-file-syntax
https://github.com/bw2/ConfigArgParse#config-file-syntax
http://10.21.32.33

Locust, Release 1.0.3

Table 1 – continued from previous page
--skip-log-setup LOCUST_SKIP_LOG_SETUP skip-log-setup Disable Locust’s logging setup. Instead, the configuration is provided by the Locust test or Python defaults.
--loglevel, -L LOCUST_LOGLEVEL loglevel Choose between DEBUG/INFO/WARNING/ERROR/CRITICAL. Default is INFO.
--logfile LOCUST_LOGFILE logfile Path to log file. If not set, log will go to stdout/stderr
--step-load LOCUST_STEP_LOAD step-load Enable Step Load mode to monitor how performance metrics varies when user load increases. Requires –step-users and –step-time to be specified.
--step-users LOCUST_STEP_USERS step-users User count to increase by step in Step Load mode. Only used together with –step-load
--step-time LOCUST_STEP_TIME step-time Step duration in Step Load mode, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with –step-load
--exit-code-on-error LOCUST_EXIT_CODE_ON_ERROR exit-code-on-error Sets the process exit code to use when a test result contain any failure or error
-s, --stop-timeout LOCUST_STOP_TIMEOUT stop-timeout Number of seconds to wait for a simulated user to complete any executing task before exiting. Default is to terminate immediately. This parameter only needs to be specified for the master process when running Locust distributed.

3.2 Running Locust distributed

Once a single machine isn’t enough to simulate the number of users that you need, Locust supports running load tests
distributed across multiple machines.

To do this, you start one instance of Locust in master mode using the --master flag. This is the instance that will
be running Locust’s web interface where you start the test and see live statistics. The master node doesn’t simulate
any users itself. Instead you have to start one or -most likely-multiple worker Locust nodes using the --worker flag,
together with the --master-host (to specify the IP/hostname of the master node).

A common set up is to run a single master on one machine, and then run one worker instance per processor core on
the worker machines.

Note: Both the master and each worker machine, must have a copy of the locust test scripts when running Locust
distributed.

Note: It’s recommended that you start a number of simulated users that are greater than number of user
classes * number of workers when running Locust distributed.

Otherwise - due to the current implementation - you might end up with a distribution of the User classes that doesn’t
correspond to the User classes’ weight attribute. And if the hatch rate is lower than the number of worker nodes, the
hatching would occur in “bursts” where all worker node would hatch a single user and then sleep for multiple seconds,
hatch another user, sleep and repeat.

3.2.1 Example

To start locust in master mode:

locust -f my_locustfile.py --master

And then on each worker (replace 192.168.0.14 with IP of the master machine, or leave out the parameter allto-
gether if your workers are on the same machine as the master):

locust -f my_locustfile.py --worker --master-host=192.168.0.14

3.2. Running Locust distributed 25

Locust, Release 1.0.3

3.2.2 Options

3.2.2.1 --master

Sets locust in master mode. The web interface will run on this node.

3.2.2.2 --worker

Sets locust in worker mode.

3.2.2.3 --master-host=X.X.X.X

Optionally used together with --worker to set the hostname/IP of the master node (defaults to 127.0.0.1)

3.2.2.4 --master-port=5557

Optionally used together with --worker to set the port number of the master node (defaults to 5557).

3.2.2.5 --master-bind-host=X.X.X.X

Optionally used together with --master. Determines what network interface that the master node will bind to.
Defaults to * (all available interfaces).

3.2.2.6 --master-bind-port=5557

Optionally used together with --master. Determines what network ports that the master node will listen to. Defaults
to 5557.

3.2.2.7 --expect-workers=X

Used when starting the master node with --headless. The master node will then wait until X worker nodes has
connected before the test is started.

3.2.3 Running distributed with Docker

See Running Locust with Docker

3.2.4 Running Locust distributed without the web UI

See Running Locust distributed without the web UI

3.2.5 Running Locust distributed in Step Load mode

See Running Locust in Step Load Mode

26 Chapter 3. Running your Locust tests

Locust, Release 1.0.3

3.2.6 Increase Locust’s performance

If you’re planning to run large-scale load tests you might be interested to use the alternative HTTP client that’s shipped
with Locust. You can read more about it here: Increase Locust’s performance with a faster HTTP client

3.3 Running Locust with Docker

The official Docker image is currently found at locustio/locust.

The docker image can be used like this (assuming that the locustifile.py exists in the current working directory):

docker run -p 8089:8089 -v $PWD:/mnt/locust locustio/locust -f /mnt/locust/locustfile.
→˓py

3.3.1 Docker Compose

Here’s an example Docker Compose file that could ber used to start both a master node, and worker nodes:

version: '3'

services:
master:
image: locustio/locust
ports:
- "8089:8089"

volumes:
- ./:/mnt/locust

command: -f /mnt/locust/locustfile.py --master -H http://master:8089

worker:
image: locustio/locust
volumes:
- ./:/mnt/locust

command: -f /mnt/locust/locustfile.py --worker --master-host master

The above compose configuration could be used to start a master node and 4 workers using the following command:

docker-compose up --scale worker=4

3.3.2 Use docker image as a base image

It’s very common to have test scripts that rely on third party python packages. In those cases you can use the official
Locust docker image as a base image:

FROM locustio/locust
RUN pip3 install some-python-package

3.4 Running Locust without the web UI

You can run locust without the web UI - for example if you want to run it in some automated flow, like a CI server -
by using the --headless flag together with -u and -r:

3.3. Running Locust with Docker 27

https://hub.docker.com/r/locustio/locust

Locust, Release 1.0.3

$ locust -f locust_files/my_locust_file.py --headless -u 1000 -r 100

-u specifies the number of Users to spawn, and -r specifies the hatch rate (number of users to spawn per second).

3.4.1 Setting a time limit for the test

If you want to specify the run time for a test, you can do that with --run-time or -t:

$ locust -f --headless -u 1000 -r 100 --run-time 1h30m

Locust will shutdown once the time is up.

3.4.2 Allow tasks to finish their iteration on shutdown

By default, locust will stop your tasks immediately. If you want to allow your tasks to finish their iteration, you can
use --stop-timeout <seconds>.

$ locust -f --headless -u 1000 -r 100 --run-time 1h30m --stop-timeout 99

3.4.3 Running Locust distributed without the web UI

If you want to run Locust distributed without the web UI, you should specify the --expect-workers option when
starting the master node, to specify the number of worker nodes that are expected to connect. It will then wait until
that many worker nodes have connected before starting the test.

3.4.4 Controlling the exit code of the Locust process

When running Locust in a CI environment, you might want to control the exit code of the Locust process. You can do
that in your test scripts by setting the process_exit_code of the Environment instance.

Below is an example that’ll set the exit code to non zero if any of the following conditions are met:

• More than 1% of the requests failed

• The average response time is longer than 200 ms

• The 95th percentile for response time is larger than 800 ms

import logging
from locust import events

@events.quitting.add_listener
def _(environment, **kw):

if environment.stats.total.fail_ratio > 0.01:
logging.error("Test failed due to failure ratio > 1%")
environment.process_exit_code = 1

elif environment.stats.total.avg_response_time > 200:
logging.error("Test failed due to average response time ratio > 200 ms")
environment.process_exit_code = 1

elif environment.stats.total.get_response_time_percentile(0.95) > 800:
logging.error("Test failed due to 95th percentil response time > 800 ms")
environment.process_exit_code = 1

(continues on next page)

28 Chapter 3. Running your Locust tests

Locust, Release 1.0.3

(continued from previous page)

else:
environment.process_exit_code = 0

(this code could go into the locustfile.py or in any other file that is imported in the locustfile)

3.5 Increase Locust’s performance with a faster HTTP client

Locust’s default HTTP client uses python-requests. The reason for this is that requests is a very well-maintained
python package, that provides a really nice API, that many python developers are familiar with. Therefore, in many
cases, we recommend that you use the default HttpUser which uses requests. However, if you’re planning to run
really large scale tests, Locust comes with an alternative HTTP client, FastHttpUser which uses geventhttpclient
instead of requests. This client is significantly faster, and we’ve seen 5x-6x performance increases for making HTTP-
requests. This does not necessarily mean that the number of users one can simulate per CPU core will automatically
increase 5x-6x, since it also depends on what else the load testing script does. However, if your locust scripts are
spending most of their CPU time in making HTTP-requests, you are likely to see significant performance gains.

3.5.1 How to use FastHttpUser

Subclass FastHttpUser instead of HttpUser:

from locust import task, between
from locust.contrib.fasthttp import FastHttpUser

class MyUser(FastHttpUser):
wait_time = between(2, 5)

@task
def index(self):

response = self.client.get("/")

Note: Because FastHttpUser uses a different client implementation with a slightly different API, it may not always
work as a drop-in replacement for HttpUser.

3.5.2 API

3.5.2.1 FastHttpUser class

class FastHttpUser(environment)
FastHttpUser uses a different HTTP client (geventhttpclient) compared to HttpUser (python-requests). It’s sig-
nificantly faster, but not as capable.

The behaviour of this user is defined by it’s tasks. Tasks can be declared either directly on the class by using the
@task decorator on the methods, or by setting the tasks attribute.

This class creates a client attribute on instantiation which is an HTTP client with support for keeping a user
session between requests.

connection_timeout = 60.0
Parameter passed to FastHttpSession

3.5. Increase Locust’s performance with a faster HTTP client 29

http://www.python-requests.org/
https://github.com/gwik/geventhttpclient/

Locust, Release 1.0.3

insecure = True
Parameter passed to FastHttpSession. Default True, meaning no SSL verification.

max_redirects = 5
Parameter passed to FastHttpSession. Default 5, meaning 4 redirects.

max_retries = 1
Parameter passed to FastHttpSession. Default 1, meaning zero retries.

network_timeout = 60.0
Parameter passed to FastHttpSession

3.5.2.2 FastHttpSession class

class FastHttpSession(environment: locust.env.Environment, base_url: str, insecure=True,
**kwargs)

get(path, **kwargs)
Sends a GET request

head(path, **kwargs)
Sends a HEAD request

options(path, **kwargs)
Sends a OPTIONS request

patch(path, data=None, **kwargs)
Sends a POST request

post(path, data=None, **kwargs)
Sends a POST request

put(path, data=None, **kwargs)
Sends a PUT request

request(method: str, path: str, name: str = None, data: str = None, catch_response: bool =
False, stream: bool = False, headers: dict = None, auth=None, json: dict = None, al-
low_redirects=True, **kwargs)

Send and HTTP request Returns locust.contrib.fasthttp.FastResponse object.

Parameters

• method – method for the new Request object.

• path – Path that will be concatenated with the base host URL that has been specified.
Can also be a full URL, in which case the full URL will be requested, and the base host is
ignored.

• name – (optional) An argument that can be specified to use as label in Locust’s statistics
instead of the URL path. This can be used to group different URL’s that are requested into
a single entry in Locust’s statistics.

• catch_response – (optional) Boolean argument that, if set, can be used to make a
request return a context manager to work as argument to a with statement. This will allow
the request to be marked as a fail based on the content of the response, even if the response
code is ok (2xx). The opposite also works, one can use catch_response to catch a request
and then mark it as successful even if the response code was not (i.e 500 or 404).

• data – (optional) String/bytes to send in the body of the request.

• json – (optional) Dictionary to send in the body of the request. Automatically sets
Content-Type and Accept headers to “application/json”. Only used if data is not set.

30 Chapter 3. Running your Locust tests

Locust, Release 1.0.3

• headers – (optional) Dictionary of HTTP Headers to send with the request.

• auth – (optional) Auth (username, password) tuple to enable Basic HTTP Auth.

• stream – (optional) If set to true the response body will not be consumed immediately
and can instead be consumed by accessing the stream attribute on the Response object.
Another side effect of setting stream to True is that the time for downloading the response
content will not be accounted for in the request time that is reported by Locust.

class FastResponse(ghc_response, request=None, sent_request=None)

content
Unzips if necessary and buffers the received body. Careful with large files!

headers = None
Dict like object containing the response headers

json()→ dict
Parses the response as json and returns a dict

text
Returns the text content of the response as a decoded string

3.5. Increase Locust’s performance with a faster HTTP client 31

Locust, Release 1.0.3

32 Chapter 3. Running your Locust tests

CHAPTER 4

Other functionalities

4.1 Running Locust in Step Load Mode

If you want to monitor your service performance with different user load and probe the max tps that can be achieved,
you can run Locust with Step Load enabled with --step-load:

$ locust -f locust_files/my_locust_file.py --step-load

4.1.1 Options

4.1.1.1 --step-load

Enable Step Load mode to monitor how performance metrics varies when user load increases.

4.1.1.2 --step-users

Client count to increase by step in Step Load mode. Only used together with --step-load.

4.1.1.3 --step-time

Step duration in Step Load mode, e.g. (300s, 20m, 3h, 1h30m, etc.). Only used together with --step-load.

4.1.1.4 Running Locust in step load mode without the web UI

If you want to run Locust in step load mode without the web UI, you can do that with --step-users and
--step-time:

$ locust -f --headless -u 1000 -r 100 --run-time 1h30m --step-load --step-users 300 --
→˓step-time 20m

33

Locust, Release 1.0.3

Locust will swarm the clients by step and shutdown once the time is up.

4.1.1.5 Running Locust distributed in step load mode

If you want to run Locust distributed in step load mode, you should specify the --step-load option when starting
the master node, to swarm locusts by step. It will then show the --step-users option and --step-time option
in Locust UI.

4.2 Retrieve test statistics in CSV format

You may wish to consume your Locust results via a CSV file. In this case, there are two ways to do this.

First, when running Locust with the web UI, you can retrieve CSV files under the Download Data tab.

Secondly, you can run Locust with a flag which will periodically save three CSV files. This is particularly useful if
you plan on running Locust in an automated way with the --headless flag:

$ locust -f examples/basic.py --csv=example --headless -t10m

The files will be named example_stats.csv, example_failures.csv and example_history.csv
(when using --csv=example). The first two files will contain the stats and failures for the whole test run, with
a row for every stats entry (URL endpoint) and an aggregated row. The example_history.csv will get new rows
with the current (10 seconds sliding window) stats appanded during the whole test run. By default only the Aggregate
row is appended regularly to the history stats, but if Locust is started with the --csv-full-history flag, a row
for each stats entry (and the Aggregate) is appended every time the stats are written (once every 2 seconds by default).

You can also customize how frequently this is written if you desire faster (or slower) writing:

import locust.stats
locust.stats.CSV_STATS_INTERVAL_SEC = 5 # default is 2 seconds

4.3 Testing other systems using custom clients

Locust was built with HTTP as its main target. However, it can easily be extended to load test any request/response
based system, by writing a custom client that triggers request_success and request_failure events.

4.3.1 Sample XML-RPC User client

Here is an example of a User class, XmlRpcUser, which provides an XML-RPC client, XmlRpcUser, and tracks all
requests made:

import time
from xmlrpc.client import ServerProxy, Fault

from locust import User, task, between

class XmlRpcClient(ServerProxy):
"""
Simple, sample XML RPC client implementation that wraps xmlrpclib.ServerProxy and
fires locust events on request_success and request_failure, so that all requests

(continues on next page)

34 Chapter 4. Other functionalities

Locust, Release 1.0.3

(continued from previous page)

gets tracked in locust's statistics.
"""

_locust_environment = None

def __getattr__(self, name):
func = ServerProxy.__getattr__(self, name)
def wrapper(*args, **kwargs):

start_time = time.time()
try:

result = func(*args, **kwargs)
except Fault as e:

total_time = int((time.time() - start_time) * 1000)
self._locust_environment.events.request_failure.fire(request_type=

→˓"xmlrpc", name=name, response_time=total_time, exception=e)
else:

total_time = int((time.time() - start_time) * 1000)
self._locust_environment.events.request_success.fire(request_type=

→˓"xmlrpc", name=name, response_time=total_time, response_length=0)
In this example, I've hardcoded response_length=0. If we would want

→˓the response length to be
reported correctly in the statistics, we would probably need to

→˓hook in at a lower level

return wrapper

class XmlRpcUser(User):
"""
This is the abstract User class which should be subclassed. It provides an XML-

→˓RPC client
that can be used to make XML-RPC requests that will be tracked in Locust's

→˓statistics.
"""
abstract = True
def __init__(self, *args, **kwargs):

super(XmlRpcUser, self).__init__(*args, **kwargs)
self.client = XmlRpcClient(self.host)
self.client._locust_environment = self.environment

class ApiUser(XmlRpcUser):
host = "http://127.0.0.1:8877/"
wait_time = between(0.1, 1)

@task(10)
def get_time(self):

self.client.get_time()

@task(5)
def get_random_number(self):

self.client.get_random_number(0, 100)

If you’ve written Locust tests before, you’ll recognize the class called ApiUser which is a normal User class that
has a couple of tasks declared. However, the ApiUser inherits from XmlRpcUser that you can see right above
ApiUser. The XmlRpcUser is marked as abstract using abstract = True which means that Locust till not
try to create simulated users from that class (only of classes that extends it). XmlRpcUser provides an instance of

4.3. Testing other systems using custom clients 35

Locust, Release 1.0.3

XmlRpcClient under the client attribute.

The XmlRpcClient is a wrapper around the standard library’s xmlrpc.client.ServerProxy. It ba-
sically just proxies the function calls, but with the important addition of firing locust.event.Events.
request_success and locust.event.Events.request_failure events, which will record all calls in
Locust’s statistics.

Here’s an implementation of an XML-RPC server that would work as a server for the code above:

import random
import time
from xmlrpc.server import SimpleXMLRPCServer

def get_time():
time.sleep(random.random())
return time.time()

def get_random_number(low, high):
time.sleep(random.random())
return random.randint(low, high)

server = SimpleXMLRPCServer(("localhost", 8877))
print("Listening on port 8877...")
server.register_function(get_time, "get_time")
server.register_function(get_random_number, "get_random_number")
server.serve_forever()

4.4 Extending Locust

Locust comes with a number of events hooks that can be used to extend Locust in different ways.

Event hooks live on the Environment instance under the events attribute. However, since the Environment instance
hasn’t been created when locustfiles are imported, the events object can also be accessed at the module level of the
locustfile through the locust.events variable.

Here’s an example on how to set up an event listener:

from locust import events

@events.request_success.add_listener
def my_success_handler(request_type, name, response_time, response_length, **kw):

print("Successfully made a request to: %s" % name)

Note: It’s highly recommended that you add a wildcard keyword argument in your listeners (the **kw in the code
above), to prevent your code from breaking if new arguments are added in a future version.

See also:

To see all available event, please see Event hooks.

36 Chapter 4. Other functionalities

Locust, Release 1.0.3

4.4.1 Adding Web Routes

Locust uses Flask to serve the web UI and therefore it is easy to add web end-points to the web UI. By listening to the
init event, we can retrieve a reference to the Flask app instance and use that to set up a new route:

from locust import events

@events.init.add_listener
def on_locust_init(web_ui, **kw):

@web_ui.app.route("/added_page")
def my_added_page():

return "Another page"

You should now be able to start locust and browse to http://127.0.0.1:8089/added_page

4.5 Logging

Locust uses Python’s built in logging framework for handling logging.

The default logging configuration that Locust applies, writes log messages directly to stderr. --loglevel and
--logfile can be used to change the verbosity and/or make the log go to a file instead.

The default logging configuration installs handlers for the root logger as well as the locust.* loggers, so using
the root logger in your own test scripts will put the message into the log file if --logfile is used:

import logging
logging.info("this log message will go wherever the other locust log messages go")

It’s also possible to control the whole logging configuration in your own test scripts by using the
--skip-log-setup option. You will then have to configure the logging yourself.

4.5.1 Options

4.5.1.1 --skip-log-setup

Disable Locust’s logging setup. Instead, the configuration is provided by the Locust test or Python defaults.

4.5.1.2 --loglevel

Choose between DEBUG/INFO/WARNING/ERROR/CRITICAL. Default is INFO. The short-hand version is -L.

4.5.1.3 --logfile

Path to log file. If not set, log will go to stdout/stderr.

4.5.2 Locust loggers

Here’s a table of the loggers used within Locust (for reference when configuring logging settings manually):

4.5. Logging 37

http://127.0.0.1:8089/added_page
https://docs.python.org/3/library/logging.html
https://docs.python.org/3/library/logging.config.html

Locust, Release 1.0.3

Logger
name

Purpose

locust The locust namespace is used for all loggers such as locust.main, locust.runners, etc.
lo-
cust.stats_logger

This logger is used to periodically print the current stats to the console. The stats does not go into
the log file when --logfile is used by default.

4.6 Using Locust as a library

It’s possible to use Locust as a library, instead of running Locust using the locust command.

To run Locust as a library you need to create an Environment instance:

from locust.env import Environment

env = Environment(user_classes=[MyTestUser])

The Environment instance’s create_local_runner, create_master_runner or
create_worker_runner can then be used to start a Runner instance, which can be used to start a load
test:

env.create_local_runner()
env.runner.start(5000, hatch_rate=20)
env.runner.greenlet.join()

We could also use the Environment instance’s create_web_ui method to start a Web UI that can be used to
view the stats, and to control the runner (e.g. start and stop load tests):

env.create_local_runner()
env.create_web_ui()
env.web_ui.greenlet.join()

4.6.1 Full example

import gevent
from locust import HttpUser, task, between
from locust.env import Environment
from locust.stats import stats_printer
from locust.log import setup_logging

setup_logging("INFO", None)

class User(HttpUser):
wait_time = between(1, 3)
host = "https://docs.locust.io"

@task
def my_task(self):

self.client.get("/")

@task
def task_404(self):

(continues on next page)

38 Chapter 4. Other functionalities

Locust, Release 1.0.3

(continued from previous page)

self.client.get("/non-existing-path")

setup Environment and Runner
env = Environment(user_classes=[User])
env.create_local_runner()

start a WebUI instance
env.create_web_ui("127.0.0.1", 8089)

start a greenlet that periodically outputs the current stats
gevent.spawn(stats_printer(env.stats))

start the test
env.runner.start(1, hatch_rate=10)

in 60 seconds stop the runner
gevent.spawn_later(60, lambda: env.runner.quit())

wait for the greenlets
env.runner.greenlet.join()

stop the web server for good measures
env.web_ui.stop()

4.6. Using Locust as a library 39

Locust, Release 1.0.3

40 Chapter 4. Other functionalities

CHAPTER 5

API

5.1 API

5.1.1 User class

class User(environment)
Represents a “user” which is to be hatched and attack the system that is to be load tested.

The behaviour of this user is defined by its tasks. Tasks can be declared either directly on the class by using the
@task decorator on methods, or by setting the tasks attribute.

This class should usually be subclassed by a class that defines some kind of client. For example when load
testing an HTTP system, you probably want to use the HttpUser class.

abstract = True
If abstract is True, the class is meant to be subclassed, and locust will not spawn users of this class during
a test.

on_start()
Called when a User starts running.

on_stop()
Called when a User stops running (is killed)

tasks = []
Collection of python callables and/or TaskSet classes that the Locust user(s) will run.

If tasks is a list, the task to be performed will be picked randomly.

If tasks is a (callable,int) list of two-tuples, or a {callable:int} dict, the task to be performed will be picked
randomly, but each task will be weighted according to its corresponding int value. So in the following
case, ThreadPage will be fifteen times more likely to be picked than write_post:

class ForumPage(TaskSet):
tasks = {ThreadPage:15, write_post:1}

41

Locust, Release 1.0.3

wait()
Make the running user sleep for a duration defined by the User.wait_time function.

The user can also be killed gracefully while it’s sleeping, so calling this method within a task makes it
possible for a user to be killed mid-task even if you’ve set a stop_timeout. If this behavour is not desired,
you should make the user wait using gevent.sleep() instead.

wait_time = None
Method that returns the time (in seconds) between the execution of locust tasks. Can be overridden for
individual TaskSets.

Example:

from locust import User, between
class MyUser(User):

wait_time = between(3, 25)

weight = 10
Probability of user class being chosen. The higher the weight, the greater the chance of it being chosen.

5.1.2 HttpUser class

class HttpUser(*args, **kwargs)
Represents an HTTP “user” which is to be hatched and attack the system that is to be load tested.

The behaviour of this user is defined by its tasks. Tasks can be declared either directly on the class by using the
@task decorator on methods, or by setting the tasks attribute.

This class creates a client attribute on instantiation which is an HTTP client with support for keeping a user
session between requests.

abstract = True
If abstract is True, the class is meant to be subclassed, and users will not choose this locust during a test

client = None
Instance of HttpSession that is created upon instantiation of Locust. The client supports cookies, and
therefore keeps the session between HTTP requests.

5.1.3 TaskSet class

class TaskSet(parent)
Class defining a set of tasks that a User will execute.

When a TaskSet starts running, it will pick a task from the tasks attribute, execute it, and then sleep for the
number of seconds returned by its wait_time function. If no wait_time method has been declared on the TaskSet,
it’ll call the wait_time function on the User by default. It will then schedule another task for execution and so
on.

TaskSets can be nested, which means that a TaskSet’s tasks attribute can contain another TaskSet. If the nested
TaskSet is scheduled to be executed, it will be instantiated and called from the currently executing TaskSet.
Execution in the currently running TaskSet will then be handed over to the nested TaskSet which will continue
to run until it throws an InterruptTaskSet exception, which is done when TaskSet.interrupt() is called.
(execution will then continue in the first TaskSet).

client
Shortcut to the client client attribute of this TaskSet’s User

42 Chapter 5. API

Locust, Release 1.0.3

interrupt(reschedule=True)
Interrupt the TaskSet and hand over execution control back to the parent TaskSet.

If reschedule is True (default), the parent User will immediately re-schedule, and execute, a new task.

on_start()
Called when a User starts executing this TaskSet

on_stop()
Called when a User stops executing this TaskSet. E.g. when TaskSet.interrupt() is called or when the User
is killed

parent
Parent TaskSet instance of this TaskSet (or User if this is not a nested TaskSet)

schedule_task(task_callable, first=False)
Add a task to the User’s task execution queue.

Parameters

• task_callable – User task to schedule.

• args – Arguments that will be passed to the task callable.

• kwargs – Dict of keyword arguments that will be passed to the task callable.

• first – Optional keyword argument. If True, the task will be put first in the queue.

tasks = []
Collection of python callables and/or TaskSet classes that the User(s) will run.

If tasks is a list, the task to be performed will be picked randomly.

If tasks is a (callable,int) list of two-tuples, or a {callable:int} dict, the task to be performed will be picked
randomly, but each task will be weighted according to its corresponding int value. So in the following
case, ThreadPage will be fifteen times more likely to be picked than write_post:

class ForumPage(TaskSet):
tasks = {ThreadPage:15, write_post:1}

user
User instance that this TaskSet was created by

wait()
Make the running user sleep for a duration defined by the Locust.wait_time function (or TaskSet.wait_time
function if it’s been defined).

The user can also be killed gracefully while it’s sleeping, so calling this method within a task makes it
possible for a user to be killed mid-task, even if you’ve set a stop_timeout. If this behavour is not desired
you should make the user wait using gevent.sleep() instead.

wait_time()
Method that returns the time (in seconds) between the execution of tasks.

Example:

from locust import TaskSet, between
class Tasks(TaskSet):

wait_time = between(3, 25)

5.1. API 43

Locust, Release 1.0.3

5.1.4 task decorator

task(weight=1)
Used as a convenience decorator to be able to declare tasks for a User or a TaskSet inline in the class. Example:

class ForumPage(TaskSet):
@task(100)
def read_thread(self):

pass

@task(7)
def create_thread(self):

pass

5.1.5 tag decorator

tag(*tags)
Decorator for tagging tasks and TaskSets with the given tag name. You can then limit the test to only execute
tasks that are tagged with any of the tags provided by the –tags command-line argument. Example:

class ForumPage(TaskSet):
@tag('thread')
@task(100)
def read_thread(self):

pass

@tag('thread')
@tag('post')
@task(7)
def create_thread(self):

pass

@tag('post')
@task(11)
def comment(self):

pass

5.1.6 SequentialTaskSet class

class SequentialTaskSet(*args, **kwargs)
Class defining a sequence of tasks that a User will execute.

Works like TaskSet, but task weight is ignored, and all tasks are executed in order. Tasks can either be specified
by setting the tasks attribute to a list of tasks, or by declaring tasks as methods using the @task decorator. The
order of declaration decides the order of execution.

It’s possible to combine a task list in the tasks attribute, with some tasks declared using the @task decorator.
The order of declaration is respected also in that case.

client
Shortcut to the client client attribute of this TaskSet’s User

interrupt(reschedule=True)
Interrupt the TaskSet and hand over execution control back to the parent TaskSet.

If reschedule is True (default), the parent User will immediately re-schedule, and execute, a new task.

44 Chapter 5. API

Locust, Release 1.0.3

on_start()
Called when a User starts executing this TaskSet

on_stop()
Called when a User stops executing this TaskSet. E.g. when TaskSet.interrupt() is called or when the User
is killed

parent
Parent TaskSet instance of this TaskSet (or User if this is not a nested TaskSet)

schedule_task(task_callable, first=False)
Add a task to the User’s task execution queue.

Parameters

• task_callable – User task to schedule.

• args – Arguments that will be passed to the task callable.

• kwargs – Dict of keyword arguments that will be passed to the task callable.

• first – Optional keyword argument. If True, the task will be put first in the queue.

user
User instance that this TaskSet was created by

wait_time()
Method that returns the time (in seconds) between the execution of tasks.

Example:

from locust import TaskSet, between
class Tasks(TaskSet):

wait_time = between(3, 25)

5.1.7 Built in wait_time functions

between(min_wait, max_wait)
Returns a function that will return a random number between min_wait and max_wait.

Example:

class MyUser(User):
wait between 3.0 and 10.5 seconds after each task
wait_time = between(3.0, 10.5)

constant(wait_time)
Returns a function that just returns the number specified by the wait_time argument

Example:

class MyUser(User):
wait_time = constant(3)

constant_pacing(wait_time)
Returns a function that will track the run time of the tasks, and for each time it’s called it will return a wait time
that will try to make the total time between task execution equal to the time specified by the wait_time argument.

In the following example the task will always be executed once every second, no matter the task execution time:

5.1. API 45

Locust, Release 1.0.3

class MyUser(User):
wait_time = constant_pacing(1)
@task
def my_task(self):

time.sleep(random.random())

If a task execution exceeds the specified wait_time, the wait will be 0 before starting the next task.

5.1.8 HttpSession class

class HttpSession(base_url, request_success, request_failure, *args, **kwargs)
Class for performing web requests and holding (session-) cookies between requests (in order to be able to log in
and out of websites). Each request is logged so that locust can display statistics.

This is a slightly extended version of python-request’s requests.Session class and mostly this class works
exactly the same. However the methods for making requests (get, post, delete, put, head, options, patch, request)
can now take a url argument that’s only the path part of the URL, in which case the host part of the URL will be
prepended with the HttpSession.base_url which is normally inherited from a User class’ host property.

Each of the methods for making requests also takes two additional optional arguments which are Locust specific
and doesn’t exist in python-requests. These are:

Parameters

• name – (optional) An argument that can be specified to use as label in Locust’s statistics
instead of the URL path. This can be used to group different URL’s that are requested into
a single entry in Locust’s statistics.

• catch_response – (optional) Boolean argument that, if set, can be used to make a re-
quest return a context manager to work as argument to a with statement. This will allow
the request to be marked as a fail based on the content of the response, even if the response
code is ok (2xx). The opposite also works, one can use catch_response to catch a request
and then mark it as successful even if the response code was not (i.e 500 or 404).

__init__(base_url, request_success, request_failure, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

delete(url, **kwargs)
Sends a DELETE request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

get(url, **kwargs)
Sends a GET request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

head(url, **kwargs)
Sends a HEAD request. Returns Response object.

46 Chapter 5. API

http://python-requests.org
https://requests.readthedocs.io/en/latest/api/#requests.Session
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response

Locust, Release 1.0.3

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

options(url, **kwargs)
Sends a OPTIONS request. Returns Response object.

Parameters

• url – URL for the new Request object.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

patch(url, data=None, **kwargs)
Sends a PATCH request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body
of the Request.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

post(url, data=None, json=None, **kwargs)
Sends a POST request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body
of the Request.

• json – (optional) json to send in the body of the Request.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

put(url, data=None, **kwargs)
Sends a PUT request. Returns Response object.

Parameters

• url – URL for the new Request object.

• data – (optional) Dictionary, list of tuples, bytes, or file-like object to send in the body
of the Request.

• **kwargs – Optional arguments that request takes.

Return type requests.Response

request(method, url, name=None, catch_response=False, **kwargs)
Constructs and sends a requests.Request. Returns requests.Response object.

Parameters

• method – method for the new Request object.

5.1. API 47

https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Request
https://requests.readthedocs.io/en/latest/api/#requests.Response

Locust, Release 1.0.3

• url – URL for the new Request object.

• name – (optional) An argument that can be specified to use as label in Locust’s statistics
instead of the URL path. This can be used to group different URL’s that are requested into
a single entry in Locust’s statistics.

• catch_response – (optional) Boolean argument that, if set, can be used to make a
request return a context manager to work as argument to a with statement. This will allow
the request to be marked as a fail based on the content of the response, even if the response
code is ok (2xx). The opposite also works, one can use catch_response to catch a request
and then mark it as successful even if the response code was not (i.e 500 or 404).

• params – (optional) Dictionary or bytes to be sent in the query string for the Request.

• data – (optional) Dictionary or bytes to send in the body of the Request.

• headers – (optional) Dictionary of HTTP Headers to send with the Request.

• cookies – (optional) Dict or CookieJar object to send with the Request.

• files – (optional) Dictionary of 'filename': file-like-objects for multi-
part encoding upload.

• auth – (optional) Auth tuple or callable to enable Basic/Digest/Custom HTTP Auth.

• timeout (float or tuple) – (optional) How long in seconds to wait for the server
to send data before giving up, as a float, or a (connect timeout, read timeout) tuple.

• allow_redirects (bool) – (optional) Set to True by default.

• proxies – (optional) Dictionary mapping protocol to the URL of the proxy.

• stream – (optional) whether to immediately download the response content. Defaults to
False.

• verify – (optional) if True, the SSL cert will be verified. A CA_BUNDLE path can
also be provided.

• cert – (optional) if String, path to ssl client cert file (.pem). If Tuple, (‘cert’, ‘key’) pair.

5.1.9 Response class

This class actually resides in the python-requests library, since that’s what Locust is using to make HTTP requests, but
it’s included in the API docs for locust since it’s so central when writing locust load tests. You can also look at the
Response class at the requests documentation.

class Response
The Response object, which contains a server’s response to an HTTP request.

apparent_encoding
The apparent encoding, provided by the chardet library.

close()
Releases the connection back to the pool. Once this method has been called the underlying raw object
must not be accessed again.

Note: Should not normally need to be called explicitly.

content
Content of the response, in bytes.

cookies = None
A CookieJar of Cookies the server sent back.

48 Chapter 5. API

user/advanced.html#timeouts
http://python-requests.org
https://requests.readthedocs.io/en/latest/api/#requests.Response
http://python-requests.org

Locust, Release 1.0.3

elapsed = None
The amount of time elapsed between sending the request and the arrival of the response (as a timedelta).
This property specifically measures the time taken between sending the first byte of the request and finish-
ing parsing the headers. It is therefore unaffected by consuming the response content or the value of the
stream keyword argument.

encoding = None
Encoding to decode with when accessing r.text.

headers = None
Case-insensitive Dictionary of Response Headers. For example, headers['content-encoding']
will return the value of a 'Content-Encoding' response header.

history = None
A list of Response objects from the history of the Request. Any redirect responses will end up here. The
list is sorted from the oldest to the most recent request.

is_permanent_redirect
True if this Response one of the permanent versions of redirect.

is_redirect
True if this Response is a well-formed HTTP redirect that could have been processed automatically (by
Session.resolve_redirects()).

iter_content(chunk_size=1, decode_unicode=False)
Iterates over the response data. When stream=True is set on the request, this avoids reading the content at
once into memory for large responses. The chunk size is the number of bytes it should read into memory.
This is not necessarily the length of each item returned as decoding can take place.

chunk_size must be of type int or None. A value of None will function differently depending on the
value of stream. stream=True will read data as it arrives in whatever size the chunks are received. If
stream=False, data is returned as a single chunk.

If decode_unicode is True, content will be decoded using the best available encoding based on the response.

iter_lines(chunk_size=512, decode_unicode=False, delimiter=None)
Iterates over the response data, one line at a time. When stream=True is set on the request, this avoids
reading the content at once into memory for large responses.

Note: This method is not reentrant safe.

json(**kwargs)
Returns the json-encoded content of a response, if any.

Parameters **kwargs – Optional arguments that json.loads takes.

Raises ValueError – If the response body does not contain valid json.

links
Returns the parsed header links of the response, if any.

next
Returns a PreparedRequest for the next request in a redirect chain, if there is one.

ok
Returns True if status_code is less than 400, False if not.

This attribute checks if the status code of the response is between 400 and 600 to see if there was a client
error or a server error. If the status code is between 200 and 400, this will return True. This is not a check
to see if the response code is 200 OK.

5.1. API 49

https://requests.readthedocs.io/en/latest/api/#requests.Response.status_code

Locust, Release 1.0.3

raise_for_status()
Raises stored HTTPError, if one occurred.

raw = None
File-like object representation of response (for advanced usage). Use of raw requires that stream=True
be set on the request. This requirement does not apply for use internally to Requests.

reason = None
Textual reason of responded HTTP Status, e.g. “Not Found” or “OK”.

request = None
The PreparedRequest object to which this is a response.

status_code = None
Integer Code of responded HTTP Status, e.g. 404 or 200.

text
Content of the response, in unicode.

If Response.encoding is None, encoding will be guessed using chardet.

The encoding of the response content is determined based solely on HTTP headers, following RFC 2616
to the letter. If you can take advantage of non-HTTP knowledge to make a better guess at the encoding,
you should set r.encoding appropriately before accessing this property.

url = None
Final URL location of Response.

5.1.10 ResponseContextManager class

class ResponseContextManager(response, request_success, request_failure)
A Response class that also acts as a context manager that provides the ability to manually control if an HTTP
request should be marked as successful or a failure in Locust’s statistics

This class is a subclass of Response with two additional methods: success and failure.

failure(exc)
Report the response as a failure.

exc can be either a python exception, or a string in which case it will be wrapped inside a CatchRespon-
seError.

Example:

with self.client.get("/", catch_response=True) as response:
if response.content == b"":

response.failure("No data")

success()
Report the response as successful

Example:

with self.client.get("/does/not/exist", catch_response=True) as response:
if response.status_code == 404:

response.success()

50 Chapter 5. API

https://requests.readthedocs.io/en/latest/api/#requests.Response

Locust, Release 1.0.3

5.1.11 InterruptTaskSet Exception

exception InterruptTaskSet(reschedule=True)
Exception that will interrupt a User when thrown inside a task

5.1.12 Environment class

class Environment(*, user_classes=[], tags=None, exclude_tags=None, events=None, host=None,
reset_stats=False, step_load=False, stop_timeout=None, catch_exceptions=True,
parsed_options=None)

catch_exceptions = True
If True exceptions that happen within running users will be catched (and reported in UI/console). If False,
exeptions will be raised.

create_local_runner()
Create a LocalRunner instance for this Environment

create_master_runner(master_bind_host=’*’, master_bind_port=5557)
Create a MasterRunner instance for this Environment

Parameters

• master_bind_host – Interface/host that the master should use for incoming worker
connections. Defaults to “*” which means all interfaces.

• master_bind_port – Port that the master should listen for incoming worker connec-
tions on

create_web_ui(host=”, port=8089, auth_credentials=None, tls_cert=None, tls_key=None)
Creates a WebUI instance for this Environment and start running the web server

Parameters

• host – Host/interface that the web server should accept connections to. Defaults to “”
which means all interfaces

• port – Port that the web server should listen to

• auth_credentials – If provided (in format “username:password”) basic auth will be
enabled

• tls_cert – An optional path (str) to a TLS cert. If this is provided the web UI will be
served over HTTPS

• tls_key – An optional path (str) to a TLS private key. If this is provided the web UI will
be served over HTTPS

create_worker_runner(master_host, master_port)
Create a WorkerRunner instance for this Environment

Parameters

• master_host – Host/IP of a running master node

• master_port – Port on master node to connect to

events = None
Event hooks used by Locust internally, as well as to extend Locust’s functionality See Event hooks for
available events.

5.1. API 51

Locust, Release 1.0.3

exclude_tags = None
If set, only tasks that aren’t tagged by tags in this list will be executed

host = None
Base URL of the target system

parsed_options = None
Optional reference to the parsed command line options (used to pre-populate fields in Web UI)

process_exit_code = None
If set it’ll be the exit code of the Locust process

reset_stats = False
Determines if stats should be reset once all simulated users have been spawned

runner = None
Reference to the Runner instance

stats = None
Reference to RequestStats instance

step_load = False
Determines if we’re running in step load mode

stop_timeout = None
If set, the runner will try to stop the runnning users gracefully and wait this many seconds before killing
them hard.

tags = None
If set, only tasks that are tagged by tags in this list will be executed

user_classes = []
User classes that the runner will run

web_ui = None
Reference to the WebUI instance

5.1.13 Event hooks

Locust provide event hooks that can be used to extend Locus in various ways.

The following event hooks are available under Environment.events, and there’s also a reference to these events
under locust.events that can be used at the module level of locust scripts (since the Environment instance hasn’t
been created when the locustfile is imported).

class Events

hatch_complete
Fired when all simulated users has been spawned.

Event arguments:

Parameters user_count – Number of users that was hatched

alias of EventHook

init
Fired when Locust is started, once the Environment instance and locust runner instance have been created.
This hook can be used by end-users’ code to run code that requires access to the Envirionment. For
example to register listeners to request_success, request_failure or other events.

Event arguments:

52 Chapter 5. API

Locust, Release 1.0.3

Parameters environment – Environment instance

alias of EventHook

init_command_line_parser
Event that can be used to add command line options to Locust

Event arguments:

Parameters parser – ArgumentParser instance

alias of EventHook

quitting
Fired when the locust process is exiting

Event arguments:

Parameters environment – Environment instance

alias of EventHook

report_to_master
Used when Locust is running in –worker mode. It can be used to attach data to the dicts that are regularly
sent to the master. It’s fired regularly when a report is to be sent to the master server.

Note that the keys “stats” and “errors” are used by Locust and shouldn’t be overridden.

Event arguments:

Parameters

• client_id – The client id of the running locust process.

• data – Data dict that can be modified in order to attach data that should be sent to the
master.

alias of EventHook

request_failure
Fired when a request fails. This event is typically used to report failed requests when writing custom
clients for locust.

Event arguments:

Parameters

• request_type – Request type method used

• name – Path to the URL that was called (or override name if it was used in the call to the
client)

• response_time – Time in milliseconds until exception was thrown

• response_length – Content-length of the response

• exception – Exception instance that was thrown

alias of EventHook

request_success
Fired when a request is completed successfully. This event is typically used to report requests when writing
custom clients for locust.

Event arguments:

Parameters

5.1. API 53

Locust, Release 1.0.3

• request_type – Request type method used

• name – Path to the URL that was called (or override name if it was used in the call to the
client)

• response_time – Response time in milliseconds

• response_length – Content-length of the response

alias of EventHook

test_start
Fired when a new load test is started. It’s not fired again if the number of users change during a test. When
running locust distributed the event is only fired on the master node and not on each worker node.

alias of EventHook

test_stop
Fired when a load test is stopped. When running locust distributed the event is only fired on the master
node and not on each worker node.

alias of EventHook

user_error
Fired when an exception occurs inside the execution of a User class.

Event arguments:

Parameters

• user_instance – User class instance where the exception occurred

• exception – Exception that was thrown

• tb – Traceback object (from sys.exc_info()[2])

alias of EventHook

worker_report
Used when Locust is running in –master mode and is fired when the master server receives a report from
a Locust worker server.

This event can be used to aggregate data from the locust worker servers.

Event arguments:

Parameters

• client_id – Client id of the reporting worker

• data – Data dict with the data from the worker node

alias of EventHook

5.1.13.1 EventHook class

The event hooks are instances of the locust.events.EventHook class:

class EventHook
Simple event class used to provide hooks for different types of events in Locust.

Here’s how to use the EventHook class:

54 Chapter 5. API

Locust, Release 1.0.3

my_event = EventHook()
def on_my_event(a, b, **kw):

print("Event was fired with arguments: %s, %s" % (a, b))
my_event.add_listener(on_my_event)
my_event.fire(a="foo", b="bar")

If reverse is True, then the handlers will run in the reverse order that they were inserted

Note: It’s highly recommended that you add a wildcard keyword argument in your event listeners to prevent your
code from breaking if new arguments are added in a future version.

5.1.14 Runner classes

class Runner(environment)
Orchestrates the load test by starting and stopping the users.

Use one of the create_local_runner, create_master_runner or create_worker_runner
methods on the Environment instance to create a runner of the desired type.

quit()
Stop any running load test and kill all greenlets for the runner

start(user_count, hatch_rate, wait=False)
Start running a load test

Parameters

• user_count – Number of users to start

• hatch_rate – Number of users to spawn per second

• wait – If True calls to this method will block until all users are spawned. If False (the
default), a greenlet that spawns the users will be started and the call to this method will
return immediately.

stop()
Stop a running load test by stopping all running users

user_count

Returns Number of currently running users

class LocalRunner(environment)
Runner for running single process load test

class MasterRunner(environment, master_bind_host, master_bind_port)
Runner used to run distributed load tests across multiple processes and/or machines.

MasterRunner doesn’t spawn any user greenlets itself. Instead it expects WorkerRunners to connect to it,
which it will then direct to start and stop user greenlets. Stats sent back from the WorkerRunners will
aggregated.

class WorkerRunner(environment, master_host, master_port)
Runner used to run distributed load tests across multiple processes and/or machines.

WorkerRunner connects to a MasterRunner from which it’ll receive instructions to start and stop user green-
lets. The WorkerRunner will preiodically take the stats generated by the running users and send back to the
MasterRunner.

5.1. API 55

Locust, Release 1.0.3

5.1.15 Web UI class

class WebUI(environment, host, port, auth_credentials=None, tls_cert=None, tls_key=None)
Sets up and runs a Flask web app that can start and stop load tests using the environment.runner as well
as show the load test statistics in environment.stats

app = None
Reference to the flask.Flask app. Can be used to add additional web routes and customize the Flask
app in other various ways. Example:

from flask import request

@web_ui.app.route("/my_custom_route")
def my_custom_route():

return "your IP is: %s" % request.remote_addr

auth_required_if_enabled(view_func)
Decorator that can be used on custom route methods that will turn on Basic Auth authentication if the
--web-auth flag is used. Example:

@web_ui.app.route("/my_custom_route")
@web_ui.auth_required_if_enabled
def my_custom_route():

return "custom response"

greenlet = None
Greenlet of the running web server

server = None
Reference to the pyqsgi.WSGIServer instance

stop()
Stop the running web server

56 Chapter 5. API

CHAPTER 6

Third-party tools

6.1 Third party tools

6.1.1 Support for other sampler protocols, reporting etc

• Locust Plugins

6.1.2 Automate distributed runs with no manual steps

• Locust Swarm

6.1.3 Using other languages

A Locust master and a Locust worker communicate by exchanging msgpack messages, which is supported by many
languages. So, you can write your User tasks in any languages you like. For convenience, some libraries do the job as
a worker runner. They run your User tasks, and report to master regularly.

6.1.3.1 Golang

• Boomer

6.1.3.2 Java

• Locust4j

• Swarm

57

https://github.com/SvenskaSpel/locust-plugins/
https://github.com/SvenskaSpel/locust-swarm/
http://msgpack.org/
https://github.com/myzhan/boomer/
https://github.com/myzhan/locust4j
https://github.com/anhldbk/swarm

Locust, Release 1.0.3

6.1.4 Configuration Management

Deploying Locust is easy, but here and there some tools can still provide a measure of convenience.

tinx.locust is an Ansible role to install, configure and control Locust as a systemd service, or to build Locust docker
images using ansible-container. Also manages locustfiles and accompanying test data.

58 Chapter 6. Third-party tools

https://github.com/tinx/ansible-role-locust

CHAPTER 7

Changelog

7.1 Changelog Highlights

For full details of the Locust changelog, please see https://github.com/locustio/locust/blob/master/CHANGELOG.md

7.1.1 In development

7.1.2 1.0.3

• Ability to control the exit code of the Locust process by setting Environment.process_exit_code

• FastHttpLocust: Change dependency to use original geventhttpclient (now that releases can be made there)
instead of geventhttpclient-wheels

• Fix search on readthedocs

7.1.3 1.0.2

• Check for low open files limit (ulimit) and try to automatically increase it from within the locust process.

• Other various bug fixes as improvements

7.1.4 1.0, 1.0.1

This version contains some breaking changes.

7.1.4.1 Locust class renamed to User

We’ve renamed the Locust and HttpLocust classes to User and HttpUser. The locust attribute on
TaskSet instances has been renamed to user.

59

https://github.com/locustio/locust/blob/master/CHANGELOG.md

Locust, Release 1.0.3

The parameter for setting number of users has also been changed, from -c / --clients to -u / --users.

7.1.4.2 Ability to declare @task directly under the User class

It’s now possible to declare tasks directly under a User class like this:

class WebUser(User):
@task
def some_task(self):

pass

In tasks declared under a User class (e.g. some_task in the example above), self refers to the User instance, as
one would expect. For tasks defined under a TaskSet class, self would refer to the TaskSet instance.

The task_set attribute on the User class (previously Locust class) has been removed. To declare a User class
with a single TaskSet one would now use the the tasks attribute instead:

class MyTaskSet(TaskSet):
...

class WebUser(User):
tasks = [MyTaskSet]

7.1.4.3 Task tagging

A new tag feature has been added that makes it possible to include/exclude tasks during a test run.

Tasks can be tagged using the @tag decorator:

class WebUser(User):
@task
@tag("tag1", "tag2")
def my_task(self):

...

And tasks can then be specified/excluded using the --tags/-T and --exclude-tags/-E command line argu-
ments.

7.1.4.4 Environment variables changed

The following changes has been made to the configuration environment variables

• LOCUST_MASTER has been renamed to LOCUST_MODE_MASTER (in order to make it less likely to get vari-
able name collisions when running Locust in Kubernetes/K8s which automatically adds environment variables
depending on service/pod names).

• LOCUST_SLAVE has been renamed to LOCUST_MODE_WORKER.

• LOCUST_MASTER_PORT has been renamed to LOCUST_MASTER_NODE_PORT.

• LOCUST_MASTER_HOST has been renamed to LOCUST_MASTER_NODE_HOST.

• CSVFILEBASE has been renamed to LOCUST_CSV.

See the Configuration documentation for a full list of available environment variables.

60 Chapter 7. Changelog

Locust, Release 1.0.3

7.1.4.5 Other breaking changes

• The master/slave terminology has been changed to master/worker. Therefore the command line arguments
--slave and --expect-slaves has been renamed to --worker and --expect-workers.

• The option for running Locust without the Web UI has been renamed from --no-web to --headless.

• Removed Locust.setup, Locust.teardown, TaskSet.setup and TaskSet.teardown hooks. If
you want to run code at the start or end of a test, you should instead use the test_start and test_stop
events:

from locust import events

@events.test_start.add_listener
def on_test_start(**kw):

print("test is starting")

@events.test_stop.add_listener
def on_test_start(**kw):

print("test is stopping")

• TaskSequence and @seq_task has been replaced with SequentialTaskSet.

• A User count column has been added to the history stats CSV file. The column order and column names
has been changed.

• The official docker image no longer uses a shell script with a bunch of special environment variables to configure
how how locust is started. Instead, the locust command is now set as ENTRYPOINT of the docker image.
See Running Locust with Docker for more info.

• Command line option --csv-base-name has been removed, since it was just an alias for --csv.

• The way Locust handles logging has been changed. We no longer wrap stdout (and stderr) to automatically
make print statements go into the log. print() statements now only goes to stdout. To add custom entries to
the log, one should now use the Python logging module:

import logging
logging.info("custom logging message)

For more info see Logging

7.1.4.6 Web UI improvements

• It’s now possible to protect the Web UI with Basic Auth using hte --web-auth command line argument.

• The Web UI can now be served over HTTPS by specifying a TLS certificate and key with the --tls-cert
and --tls-key command line arguments.

• If the number of users and hatch rate are specified on command line, it’s now used to pre-populate the input
fields in the Web UI.

7.1.4.7 Other fixes and improvements

• Added --config command line option for specifying a configuration file path

• The code base has been refactored to make it possible to run Locust as a python lib.

• It’s now possible to call response.failure() or response.success() multiple times when using
the catch_response=True in the HTTP clients. Only the last call to success/failure will count.

7.1. Changelog Highlights 61

Locust, Release 1.0.3

• The --help output has been improved by grouping related options together.

7.1.5 0.14.6

• Fix bug when running with latest Gevent version, and pinned the latest version

7.1.6 0.14.0

• Drop Python 2 and Python 3.5 support!

• Continuously measure CPU usage and emit a warning if we get a five second average above 90%

• Show CPU usage of slave nodes in the Web UI

• Fixed issue when running Locust distributed and new slave nodes connected during the hatching/ramp-up phase
(https://github.com/locustio/locust/issues/1168)

7.1.7 0.13.5

Various minor fixes, mainly regarding FastHttpLocust.

7.1.8 0.13.4

Identical to previous version, but now built & deployed to Pypi using Travis.

7.1.9 0.13.3

• Unable to properly connect multiple slaves - https://github.com/locustio/locust/issues/1176

• Zero exit code on exception - https://github.com/locustio/locust/issues/1172

• –stop-timeout is not respected when changing number of running Users in distributed mode - https://github.com/
locustio/locust/issues/1162

7.1.10 0.13.2

• Fixed bug that broke the Web UI’s repsonse time graph

7.1.11 0.13.1

• Fixed crash bug on Python 3.8.0

• Various other bug fixes and improvements.

62 Chapter 7. Changelog

https://github.com/locustio/locust/issues/1168
https://github.com/locustio/locust/issues/1176
https://github.com/locustio/locust/issues/1172
https://github.com/locustio/locust/issues/1162
https://github.com/locustio/locust/issues/1162

Locust, Release 1.0.3

7.1.12 0.13.0

• New API for specifying wait time - https://github.com/locustio/locust/pull/1118

Example of the new API:

from locust import HttpLocust, between
class User(HttpLocust):

wait between 5 and 30 seconds
wait_time = between(5, 30)

There are three built in wait time functions: between, constant and constant_pacing.

• FastHttpLocust: Accept self signed SSL certificates, ignore host checks. Improved response code handling

• Add current working dir to sys.path - https://github.com/locustio/locust/pull/484

• Web UI improvements: Added 90th percentile to table, failure per seconds as a series in the chart

• Ability to specify host in web ui

• Added response_length to request_failure event - https://github.com/locustio/locust/pull/1144

• Added p99.9 and p99.99 to request stats distribution csv - https://github.com/locustio/locust/pull/1125

• Various other bug fixes and improvements.

7.1.13 0.12.2

• Added –skip-log-setup to disable Locust’s default logging setup.

• Added –stop-timeout to allow tasks to finish running their iteration before stopping

• Added 99.9 and 99.99 percentile response times to csv output

• Allow custom clients to set request response time to None. Those requests will be excluded when calculating
median, average, min, max and percentile response times.

• Renamed the last row in statistics table from “Total” to “Aggregated” (since the values aren’t a sum of the
individual table rows).

• Some visual improvements to the web UI.

• Fixed issue with simulating fewer number of locust users than the number of slave/worker nodes.

• Fixed bugs in the web UI related to the fact that the stats table is truncated at 500 entries.

• Various other bug fixes and improvements.

7.1.14 0.12.1

• Added new FastHttpLocust class that uses a faster HTTP client, which should be 5-6 times faster than the
normal HttpLocust class. For more info see the documentation on increasing performance.

• Added ability to set the exit code of the locust process when exceptions has occurred within the user code, using
the --exit-code-on-error parameter.

• Added TCP keep alive to master/slave communication sockets to avoid broken connections in some environ-
ments.

• Dropped support for Python 3.4

• Numerous other bug fixes and improvements.

7.1. Changelog Highlights 63

https://github.com/locustio/locust/pull/1118
https://github.com/locustio/locust/pull/484
https://github.com/locustio/locust/pull/1144
https://github.com/locustio/locust/pull/1125

Locust, Release 1.0.3

7.1.15 0.10.0

• Python 3.7 support

• Added a status page to the web UI when running Locust distributed showing the status of slave nodes and detect
down slaves using heartbeats

• Numerous bugfixes/documentation updates (see detailed changelog)

7.1.16 0.9.0

• Added detailed changelog (https://github.com/locustio/locust/blob/master/CHANGELOG.md)

• Numerous bugfixes (see detailed changelog)

• Added sequential task support - https://github.com/locustio/locust/pull/827

• Added support for user-defined wait_function - https://github.com/locustio/locust/pull/785

• By default, Locust no longer resets the statistics when the hatching is complete. Therefore
--no-reset-stats has been deprected (since it’s now the default behaviour), and instead a new
--reset-stats option has been added.

• Dropped support for Python 3.3

• Updated documentation

7.1.17 0.8.1

• Updated pyzmq version, and changed so that we don’t pin a specific version. This makes it easier to install
Locust on Windows.

7.1.18 0.8

• Python 3 support

• Dropped support for Python 2.6

• Added --no-reset-stats option for controling if the statistics should be reset once the hatching is com-
plete

• Added charts to the web UI for requests per second, average response time, and number of simulated users.

• Updated the design of the web UI.

• Added ability to write a CSV file for results via command line flag

• Added the URL of the host that is currently being tested to the web UI.

• We now also apply gevent’s monkey patching of threads. This fixes an issue when using Locust to test Cassandra
(https://github.com/locustio/locust/issues/569).

• Various bug fixes and improvements

7.1.19 0.7.5

• Use version 1.1.1 of gevent. Fixes an install issue on certain versions of python.

64 Chapter 7. Changelog

https://github.com/locustio/locust/blob/master/CHANGELOG.md
https://github.com/locustio/locust/pull/827
https://github.com/locustio/locust/pull/785
https://github.com/locustio/locust/issues/569

Locust, Release 1.0.3

7.1.20 0.7.4

• Use a newer version of requests, which fixed an issue for users with older versions of requests getting Connec-
tionErrors (https://github.com/locustio/locust/issues/273).

• Various fixes to documentation.

7.1.21 0.7.3

• Fixed bug where POST requests (and other methods as well) got incorrectly reported as GET requests, if the
request resulted in a redirect.

• Added ability to download exceptions in CSV format. Download links has also been moved to it’s own tab in
the web UI.

7.1.22 0.7.2

• Locust now returns an exit code of 1 when any failed requests were reported.

• When making an HTTP request to an endpoint that responds with a redirect, the original URL that was requested
is now used as the name for that entry in the statistics (unless an explicit override is specified through the name
argument). Previously, the last URL in the redirect chain was used to label the request(s) in the statistics.

• Fixed bug which caused only the time of the last request in a redirect chain to be included in the reported time.

• Fixed bug which caused the download time of the request body not to be included in the reported response time.

• Fixed bug that occurred on some linux dists that were tampering with the python-requests system package
(removing dependencies which requests is bundling). This bug only occured when installing Locust in the
python system packages, and not when using virtualenv.

• Various minor fixes and improvements.

7.1.23 0.7.1

• Exceptions that occurs within TaskSets are now catched by default.

• Fixed bug which caused Min response time to always be 0 after all locusts had been hatched and the statistics
had been reset.

• Minor UI improvements in the web interface.

• Handle messages from “zombie” slaves by ignoring the message and making a log entry in the master process.

7.1.24 0.7

7.1.24.1 HTTP client functionality moved to HttpLocust

Previously, the Locust class instantiated a HttpSession under the client attribute that was used to make HTTP
requests. This funcionality has now been moved into the HttpLocust class, in an effort to make it more obvious
how one can use Locust to load test non-HTTP systems.

To make existing locust scripts compatible with the new version you should make your locust classes inherit from
HttpLocust instead of the base Locust class.

7.1. Changelog Highlights 65

https://github.com/locustio/locust/issues/273

Locust, Release 1.0.3

7.1.24.2 msgpack for serializing master/slave data

Locust now uses msgpack for serializing data that is sent between a master node and it’s slaves. This adresses a
possible attack that can be used to execute code remote, if one has access to the internal locust ports that are used for
master-slave communication. The reason for this exploit was due to the fact that pickle was used.

Warning: Anyone who uses an older version should make sure that their Locust machines are not publicly
accessible on port 5557 and 5558. Also, one should never run Locust as root.

Anyone who uses the report_to_master and slave_report events, needs to make sure that any data that is
attached to the slave reports is serializable by msgpack.

7.1.24.3 requests updated to version 2.2

Locust updated requests to the latest major release.

Note: Requests 1.0 introduced some major API changes (and 2.0 just a few). Please check if you are using any
internal features and check the documentation: Migrating to 1.x and Migrationg to 2.x

7.1.24.4 gevent updated to version 1.0

gevent 1.0 has now been released and Locust has been updated accordingly.

7.1.24.5 Big refactoring of request statistics code

Refactored RequestStats.

• Created StatsEntry which represents a single stats entry (URL).

Previously the RequestStats was actually doing two different things:

• It was holding track of the aggregated stats from all requests

• It was holding the stats for single stats entries.

Now RequestStats should be instantiated and holds the global stats, as well as a dict of StatsEntry instances which
holds the stats for single stats entries (URLs)

7.1.24.6 Removed support for avg_wait

Previously one could specify avg_wait to TaskSet and Locust that Locust would try to strive to. However this can
be sufficiently accomplished by using min_wait and max_wait for most use-cases. Therefore we’ve decided to remove
the avg_wait as its use-case is not clear or just too narrow to be in the Locust core.

7.1.24.7 Removed support for ramping

Previously one could tell Locust, using the –ramp option, to try to find a stable client count that the target host could
handle, but it’s been broken and undocumented for quite a while so we’ve decided to remove it from the locust core
and perhaps have it reappear as a plugin in the future.

66 Chapter 7. Changelog

http://msgpack.org/
http://python-requests.org/
http://docs.python-requests.org/en/latest/api/#migrating-to-1-x
http://docs.python-requests.org/en/latest/api/#migrating-to-2-x

Locust, Release 1.0.3

7.1.24.8 Locust Event hooks now takes keyword argument

When Extending Locust by listening to Event hooks, the listener functions should now expect the arguments to be
passed in as keyword arguments. It’s also highly recommended to add an extra wildcard keyword arguments to listener
functions, since they’re then less likely to break if extra arguments are added to that event in some future version. For
example:

from locust import events

def on_request(request_type, name, response_time, response_length, **kw):
print "Got request!"

locust.events.request_success += on_request

The method and path arguments to request_success and request_failure are now called request_type and
name, since it’s less HTTP specific.

7.1.24.9 Other changes

• You can now specify the port on which to run the web host

• Various code cleanups

• Updated gevent/zmq libraries

• Switched to unittest2 discovery

• Added option –only-summary to only output the summary to the console, thus disabling the periodic stats output.

• Locust will now make sure to spawn all the specified locusts in distributed mode, not just a multiple of the
number of slaves.

• Fixed the broken Vagrant example.

• Fixed the broken events example (events.py).

• Fixed issue where the request column was not sortable in the web-ui.

• Minor styling of the statistics table in the web-ui.

• Added options to specify host and ports in distributed mode using –master-host, –master-port for the slaves,
–master-bind-host, –master-bind-port for the master.

• Removed previously deprecated and obsolete classes WebLocust and SubLocust.

• Fixed so that also failed requests count, when specifying a maximum number of requests on the command line

7.1.25 0.6.2

• Made Locust compatible with gevent 1.0rc2. This allows user to step around a problem with running Locust
under some versions of CentOS, that can be fixed by upgrading gevent to 1.0.

• Added parent attribute to TaskSet class that refers to the parent TaskSet, or Locust, instance. Contributed by
Aaron Daubman.

7.1.26 0.6.1

• Fixed bug that was causing problems when setting a maximum number of requests using the -n or –num-request
command line parameter.

7.1. Changelog Highlights 67

Locust, Release 1.0.3

7.1.27 0.6

Warning: This version comes with non backward compatible changes to the API. Anyone who is currently using
existing locust scripts and want to upgrade to 0.6 should read through these changes.

7.1.27.1 SubLocust replaced by TaskSet and Locust class behaviour changed

Locust classes does no longer control task scheduling and execution. Therefore, you no longer define tasks within
Locust classes, instead the Locust class has a task_set attribute which should point to a TaskSet class. Tasks
should now be defined in TaskSet classes, in the same way that was previously done in Locust and SubLocust classes.
TaskSets can be nested just like SubLocust classes could.

So the following code for 0.5.1:

class User(Locust):
min_wait = 10000
max_wait = 120000

@task(10)
def index(self):

self.client.get("/")

@task(2)
class AboutPage(SubLocust):

min_wait = 10000
max_wait = 120000

def on_init(self):
self.client.get("/about/")

@task
def team_page(self):

self.client.get("/about/team/")

@task
def press_page(self):

self.client.get("/about/press/")

@task
def stop(self):

self.interrupt()

Should now be written like:

class BrowsePage(TaskSet):
@task(10)
def index(self):

self.client.get("/")

@task(2)
class AboutPage(TaskSet):

def on_init(self):
self.client.get("/about/")

@task
(continues on next page)

68 Chapter 7. Changelog

Locust, Release 1.0.3

(continued from previous page)

def team_page(self):
self.client.get("/about/team/")

@task
def press_page(self):

self.client.get("/about/press/")

@task
def stop(self):

self.interrupt()

class User(Locust):
min_wait = 10000
max_wait = 120000
task_set = BrowsePage

Each TaskSet instance gets a locust attribute, which refers to the Locust class.

7.1.27.2 Locust now uses Requests

Locust’s own HttpBrowser class (which was typically accessed through self.client from within a locust class) has been
replaced by a thin wrapper around the requests library (http://python-requests.org). This comes with a number of
advantages. Users can now take advantage of a well documented, well written, fully fledged library for making HTTP
requests. However, it also comes with some small API changes wich will require users to update their existing load
testing scripts.

Gzip encoding turned on by default

The HTTP client now sends headers for accepting gzip encoding by default. The –gzip command line argument has
been removed and if someone want to disable the Accept-Encoding that the HTTP client uses, or any other HTTP
headers you can do:

class MyWebUser(Locust):
def on_start(self):

self.client.headers = {"Accept-Encoding":""}

Improved HTTP client

Because of the switch to using python-requests in the HTTP client, the API for the client has also gotten a few changes.

• Additionally to the get, post, put, delete and head methods, the HttpSession class now also has
patch and options methods.

• All arguments to the HTTP request methods, except for url and data should now be specified as keyword
arguments. For example, previously one could specify headers using:

client.get("/path", {"User-Agent":"locust"}) # this will no longer work

And should now be specified like:

client.get("/path", headers={"User-Agent":"locust"})

7.1. Changelog Highlights 69

http://python-requests.org

Locust, Release 1.0.3

• In general the whole HTTP client is now more powerful since it leverages on python-requests. Features that
we’re now able to use in Locust includes file upload, SSL, connection keep-alive, and more. See the python-
requests documentation for more details.

• The new HttpSession class’ methods now return python-request Response objects. This means that ac-
cessing the content of the response is no longer made using the data attribute, but instead the content attribute.
The HTTP response code is now accessed through the status_code attribute, instead of the code attribute.

HttpSession methods’ catch_response argument improved and allow_http_error argument removed

• When doing HTTP requests using the catch_response argument, the context manager that is returned now
provides two functions, success and failure that can be used to manually control what the request should
be reported as in Locust’s statistics.

class ResponseContextManager(response, request_success, request_failure)
A Response class that also acts as a context manager that provides the ability to manually control if an
HTTP request should be marked as successful or a failure in Locust’s statistics

This class is a subclass of Response with two additional methods: success and failure.

failure(exc)
Report the response as a failure.

exc can be either a python exception, or a string in which case it will be wrapped inside a CatchRe-
sponseError.

Example:

with self.client.get("/", catch_response=True) as response:
if response.content == b"":

response.failure("No data")

success()
Report the response as successful

Example:

with self.client.get("/does/not/exist", catch_response=True) as response:
if response.status_code == 404:

response.success()

• The allow_http_error argument of the HTTP client’s methods has been removed. Instead one can use the
catch_response argument to get a context manager, which can be used together with a with statement.

The following code in the previous Locust version:

client.get("/does/not/exist", allow_http_error=True)

Can instead now be written like:

with client.get("/does/not/exist", catch_response=True) as response:
response.success()

7.1.27.3 Other improvements and bug fixes

• Scheduled task callables can now take keyword arguments and not only normal function arguments.

70 Chapter 7. Changelog

http://python-requests.org
http://python-requests.org
https://requests.readthedocs.io/en/latest/api/#requests.Response
https://requests.readthedocs.io/en/latest/api/#requests.Response

Locust, Release 1.0.3

• SubLocust classes that are scheduled using locust.core.Locust.schedule_task() can now take
arguments and keyword arguments (available in self.args and self.kwargs).

• Fixed bug where the average content size would be zero when doing requests against a server that didn’t set the
content-length header (i.e. server that uses Transfer-Encoding: chunked)

7.1.27.4 Smaller API Changes

• The require_once decorator has been removed. It was an old legacy function that no longer fit into the current
way of writing Locust tests, where tasks are either methods under a Locust class or SubLocust classes containing
task methods.

• Changed signature of locust.core.Locust.schedule_task(). Previously all extra arguments that
was given to the method was passed on to the task when it was called. It no longer accepts extra arguments.
Instead, it takes an args argument (list) and a kwargs argument (dict) which are be passed to the task when it’s
called.

• Arguments for request_success event hook has been changed. Previously it took an HTTP Response
instance as argument, but this has been changed to take the content-length of the response instead. This makes
it easier to write custom clients for Locust.

7.1.28 0.5.1

• Fixed bug which caused –logfile and –loglevel command line parameters to not be respected when running
locust without zeromq.

7.1.29 0.5

7.1.29.1 API changes

• Web inteface is now turned on by default. The –web command line option has been replaced by –no-web.

• locust.events.request_success() and locust.events.request_failure() now gets the
HTTP method as the first argument.

7.1.29.2 Improvements and bug fixes

• Removed –show-task-ratio-confluence and added a –show-task-ratio-json option instead. The –show-task-
ratio-json will output JSON data containing the task execution ratio for the locust “brain”.

• The HTTP method used when a client requests a URL is now displayed in the web UI

• Some fixes and improvements in the stats exporting:

• A file name is now set (using content-disposition header) when downloading stats.

• The order of the column headers for request stats was wrong.

• Thanks Benjamin W. Smith, Jussi Kuosa and Samuele Pedroni!

7.1. Changelog Highlights 71

Locust, Release 1.0.3

7.1.30 0.4

7.1.30.1 API changes

• WebLocust class has been deprecated and is now called just Locust. The class that was previously called Locust
is now called LocustBase.

• The catch_http_error argument to HttpClient.get() and HttpClient.post() has been renamed to allow_http_error.

7.1.30.2 Improvements and bug fixes

• Locust now uses python’s logging module for all logging

• Added the ability to change the number of spawned users when a test is running, without having to restart the
test.

• Experimental support for automatically ramping up and down the number of locust to find a maximum number
of concurrent users (based on some parameters like response times and acceptable failure rate).

• Added support for failing requests based on the response data, even if the HTTP response was OK.

• Improved master node performance in order to not get bottlenecked when using enough slaves (>100)

• Minor improvements in web interface.

• Fixed missing template dir in MANIFEST file causing locust installed with “setup.py install” not to work.

72 Chapter 7. Changelog

Python Module Index

l
locust.wait_time, 45

73

Locust, Release 1.0.3

74 Python Module Index

Index

Symbols
__init__() (HttpSession method), 46

A
abstract (HttpUser attribute), 42
abstract (User attribute), 41
app (WebUI attribute), 56
auth_required_if_enabled() (WebUI method),

56

B
between() (in module locust.wait_time), 45

C
catch_exceptions (Environment attribute), 51
client (HttpUser attribute), 42
client (SequentialTaskSet attribute), 44
client (TaskSet attribute), 42
connection_timeout (FastHttpUser attribute), 29
constant() (in module locust.wait_time), 45
constant_pacing() (in module locust.wait_time),

45
content (FastResponse attribute), 31
create_local_runner() (Environment method),

51
create_master_runner() (Environment method),

51
create_web_ui() (Environment method), 51
create_worker_runner() (Environment method),

51

D
delete() (HttpSession method), 46

E
Environment (class in locust.env), 51
EventHook (class in locust.event), 54
Events (class in locust.event), 52
events (Environment attribute), 51

exclude_tags (Environment attribute), 51

F
failure() (ResponseContextManager method), 50
FastHttpSession (class in locust.contrib.fasthttp),

30
FastHttpUser (class in locust.contrib.fasthttp), 29
FastResponse (class in locust.contrib.fasthttp), 31

G
get() (FastHttpSession method), 30
get() (HttpSession method), 46
greenlet (WebUI attribute), 56

H
hatch_complete (Events attribute), 52
head() (FastHttpSession method), 30
head() (HttpSession method), 46
headers (FastResponse attribute), 31
host (Environment attribute), 52
HttpSession (class in locust.clients), 46
HttpUser (class in locust), 42

I
init (Events attribute), 52
init_command_line_parser (Events attribute),

53
insecure (FastHttpUser attribute), 29
interrupt() (SequentialTaskSet method), 44
interrupt() (TaskSet method), 42
InterruptTaskSet, 51

J
json() (FastResponse method), 31

L
LocalRunner (class in locust.runners), 55
locust.wait_time (module), 45

75

Locust, Release 1.0.3

M
MasterRunner (class in locust.runners), 55
max_redirects (FastHttpUser attribute), 30
max_retries (FastHttpUser attribute), 30

N
network_timeout (FastHttpUser attribute), 30

O
on_start() (SequentialTaskSet method), 44
on_start() (TaskSet method), 43
on_start() (User method), 41
on_stop() (SequentialTaskSet method), 45
on_stop() (TaskSet method), 43
on_stop() (User method), 41
options() (FastHttpSession method), 30
options() (HttpSession method), 47

P
parent (SequentialTaskSet attribute), 45
parent (TaskSet attribute), 43
parsed_options (Environment attribute), 52
patch() (FastHttpSession method), 30
patch() (HttpSession method), 47
post() (FastHttpSession method), 30
post() (HttpSession method), 47
process_exit_code (Environment attribute), 52
put() (FastHttpSession method), 30
put() (HttpSession method), 47

Q
quit() (Runner method), 55
quitting (Events attribute), 53

R
report_to_master (Events attribute), 53
request() (FastHttpSession method), 30
request() (HttpSession method), 47
request_failure (Events attribute), 53
request_success (Events attribute), 53
reset_stats (Environment attribute), 52
ResponseContextManager (class in locust.clients),

50
Runner (class in locust.runners), 55
runner (Environment attribute), 52

S
schedule_task() (SequentialTaskSet method), 45
schedule_task() (TaskSet method), 43
SequentialTaskSet (class in locust), 44
server (WebUI attribute), 56
start() (Runner method), 55
stats (Environment attribute), 52

step_load (Environment attribute), 52
stop() (Runner method), 55
stop() (WebUI method), 56
stop_timeout (Environment attribute), 52
success() (ResponseContextManager method), 50

T
tag() (in module locust), 44
tags (Environment attribute), 52
task() (in module locust), 44
tasks (TaskSet attribute), 43
tasks (User attribute), 41
TaskSet (class in locust), 42
test_start (Events attribute), 54
test_stop (Events attribute), 54
text (FastResponse attribute), 31

U
User (class in locust), 41
user (SequentialTaskSet attribute), 45
user (TaskSet attribute), 43
user_classes (Environment attribute), 52
user_count (Runner attribute), 55
user_error (Events attribute), 54

W
wait() (TaskSet method), 43
wait() (User method), 41
wait_time (User attribute), 42
wait_time() (SequentialTaskSet method), 45
wait_time() (TaskSet method), 43
web_ui (Environment attribute), 52
WebUI (class in locust.web), 56
weight (User attribute), 42
worker_report (Events attribute), 54
WorkerRunner (class in locust.runners), 55

76 Index

	Getting started
	What is Locust?
	Features
	Background
	Authors
	License

	Installation
	Supported Python Versions
	Installing Locust on Windows
	Installing Locust on macOS
	Increasing Maximum Number of Open Files Limit

	Quick start
	Example locustfile.py
	Start Locust
	Locust’s web interface
	More options

	Writing Locust tests
	Writing a locustfile
	User class
	wait_time attribute
	weight attribute
	host attribute
	tasks attribute

	Tasks
	Declaring tasks
	tasks attribute
	Tagging tasks

	TaskSet class
	Interrupting a TaskSet
	Differences between tasks in TaskSet and User classes
	Referencing the User instance, or the parent TaskSet instance
	Tags and TaskSets

	SequentialTaskSet class
	on_start and on_stop methods
	test_start and test_stop events
	Making HTTP requests
	Using the HTTP client
	Safe mode
	Manually controlling if a request should be considered successful or a failure
	Grouping requests to URLs with dynamic parameters
	HTTP Proxy settings

	How to structure your test code

	Running your Locust tests
	Configuration
	Command Line Options
	Environment Variables
	Configuration File
	All available configuration options

	Running Locust distributed
	Example
	Options
	--master
	--worker
	--master-host=X.X.X.X
	--master-port=5557
	--master-bind-host=X.X.X.X
	--master-bind-port=5557
	--expect-workers=X

	Running distributed with Docker
	Running Locust distributed without the web UI
	Running Locust distributed in Step Load mode
	Increase Locust’s performance

	Running Locust with Docker
	Docker Compose
	Use docker image as a base image

	Running Locust without the web UI
	Setting a time limit for the test
	Allow tasks to finish their iteration on shutdown
	Running Locust distributed without the web UI
	Controlling the exit code of the Locust process

	Increase Locust’s performance with a faster HTTP client
	How to use FastHttpUser
	API
	FastHttpUser class
	FastHttpSession class

	Other functionalities
	Running Locust in Step Load Mode
	Options
	--step-load
	--step-users
	--step-time
	Running Locust in step load mode without the web UI
	Running Locust distributed in step load mode

	Retrieve test statistics in CSV format
	Testing other systems using custom clients
	Sample XML-RPC User client

	Extending Locust
	Adding Web Routes

	Logging
	Options
	--skip-log-setup
	--loglevel
	--logfile

	Locust loggers

	Using Locust as a library
	Full example

	API
	API
	User class
	HttpUser class
	TaskSet class
	task decorator
	tag decorator
	SequentialTaskSet class
	Built in wait_time functions
	HttpSession class
	Response class
	ResponseContextManager class
	InterruptTaskSet Exception
	Environment class
	Event hooks
	EventHook class

	Runner classes
	Web UI class

	Third-party tools
	Third party tools
	Support for other sampler protocols, reporting etc
	Automate distributed runs with no manual steps
	Using other languages
	Golang
	Java

	Configuration Management

	Changelog
	Changelog Highlights
	In development
	1.0.3
	1.0.2
	1.0, 1.0.1
	Locust class renamed to User
	Ability to declare @task directly under the User class
	Task tagging
	Environment variables changed
	Other breaking changes
	Web UI improvements
	Other fixes and improvements

	0.14.6
	0.14.0
	0.13.5
	0.13.4
	0.13.3
	0.13.2
	0.13.1
	0.13.0
	0.12.2
	0.12.1
	0.10.0
	0.9.0
	0.8.1
	0.8
	0.7.5
	0.7.4
	0.7.3
	0.7.2
	0.7.1
	0.7
	HTTP client functionality moved to HttpLocust
	msgpack for serializing master/slave data
	requests updated to version 2.2
	gevent updated to version 1.0
	Big refactoring of request statistics code
	Removed support for avg_wait
	Removed support for ramping
	Locust Event hooks now takes keyword argument
	Other changes

	0.6.2
	0.6.1
	0.6
	SubLocust replaced by TaskSet and Locust class behaviour changed
	Locust now uses Requests
	Other improvements and bug fixes
	Smaller API Changes

	0.5.1
	0.5
	API changes
	Improvements and bug fixes

	0.4
	API changes
	Improvements and bug fixes

	Python Module Index
	Index

